GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (3)
  • Coutermarsh, Bonita  (3)
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2003
    In:  American Journal of Physiology-Renal Physiology Vol. 284, No. 1 ( 2003-01-01), p. F113-F121
    In: American Journal of Physiology-Renal Physiology, American Physiological Society, Vol. 284, No. 1 ( 2003-01-01), p. F113-F121
    Abstract: Nephropathy is a major contributor to overall morbidity and mortality in diabetic patients. Early renal changes during diabetes include Na retention and renal hypertrophy. Tumor necrosis factor (TNF) is elevated during diabetes and is implicated in the pathogenesis of diabetic nephropathy. We tested the hypothesis that TNF contributes to Na retention and renal hypertrophy during diabetes. Rats with streptozotocin-induced diabetes exhibit increased urinary TNF excretion, Na retention, and renal hypertrophy through the first 20 days of diabetes. Administration of a soluble TNF antagonist (TNFR:Fc) to diabetic rats reduces urinary TNF excretion and prevents Na retention and renal hypertrophy. TNF stimulates Na uptake in distal tubule cells isolated from diabetic rats, providing a possible mechanism for TNF-induced Na retention. We conclude that urinary TNF contributes to early diabetic nephropathy and may serve as a valuable diagnostic marker. Furthermore, inhibition of TNF during diabetes may attenuate early pathological changes in diabetic nephropathy.
    Type of Medium: Online Resource
    ISSN: 1931-857X , 1522-1466
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2003
    detail.hit.zdb_id: 1477287-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, American Physiological Society, Vol. 292, No. 2 ( 2007-02), p. R1052-R1060
    Abstract: Killifish are euryhaline teleosts that adapt to rapid changes in the salinity of the seawater. It is generally accepted that acclimation to seawater is mediated by cortisol activation of the glucocorticoid receptor (GR), which stimulates CFTR mRNA expression and CFTR-mediated Cl − secretion by the gill. Because there is no direct evidence in killifish that the GR stimulates CFTR gene expression, quantitative PCR studies were conducted to test the hypothesis that cortisol activation of GR upregulates CFTR mRNA expression and that this response is required for acclimation to seawater. Inhibition of the GR by RU-486 prevented killifish from acclimating to increased salinity and blocked the increase in CFTR mRNA. In contrast, inhibition of the mineralocorticoid receptor by spironolactone had no effect on acclimation to seawater. Thus acclimation to increased salinity in killifish requires signaling via the GR and includes an increase in CFTR gene expression. Because arsenic, a toxic metalloid that naturally occurs in the aquatic environment, has been shown to disrupt GR transcriptional regulation in avian and mammalian systems, studies were also conducted to determine whether arsenic disrupts cortisol-mediated activation of CFTR gene expression in this in vivo fish model and thereby blocks the ability of killifish to acclimate to increased salinity. Arsenic prevented acclimation to seawater and decreased CFTR protein abundance. However, arsenic did not disrupt the GR-induced increase in CFTR mRNA. Thus arsenic blocks acclimation to seawater in killifish by a mechanism that does not disrupt GR-mediated induction of CFTR gene expression.
    Type of Medium: Online Resource
    ISSN: 0363-6119 , 1522-1490
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2007
    detail.hit.zdb_id: 1477297-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Physiological Society ; 2012
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 303, No. 6 ( 2012-09-15), p. L509-L518
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 303, No. 6 ( 2012-09-15), p. L509-L518
    Abstract: In the clinical setting, mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene enhance the inflammatory response in the lung to Pseudomonas aeruginosa ( P. aeruginosa ) infection. However, studies on human airway epithelial cells in vitro have produced conflicting results regarding the effect of mutations in CFTR on the inflammatory response to P. aeruginosa, and there are no comprehensive studies evaluating the effect of P. aeruginosa on the inflammatory response in airway epithelial cells with the ΔF508/ΔF508 genotype and their matched CF cell line rescued with wild-type (wt)-CFTR. CFBE41o- cells (ΔF508/ΔF508) and CFBE41o- cells complemented with wt-CFTR (CFBE-wt-CFTR) have been used extensively as an experimental model to study CF. Thus the goal of this study was to examine the effect of P. aeruginosa on gene expression and cytokine/chemokine production in this pair of cells. P. aeruginosa elicited a more robust increase in cytokine and chemokine expression (e.g., IL-8, CXCL1, CXCL2 and TNF-α) in CFBE-wt-CFTR cells compared with CFBE-ΔF508-CFTR cells. These results demonstrate that CFBE41o- cells complemented with wt-CFTR mount a more robust inflammatory response to P. aeruginosa than CFBE41o-ΔF508/ΔF508-CFTR cells. Taken together with other published studies, our data demonstrate that there is no compelling evidence to support the view that mutations in CFTR induce a hyperinflammatory response in human airway epithelial cells in vivo . Although the lungs of patients with CF have abundant levels of proinflammatory cytokines and chemokines, because the lung is populated by immune cells and epithelial cells there is no way to know, a priori, whether airway epithelial cells in the CF lung in vivo are hyperinflammatory in response to P. aeruginosa compared with non-CF lung epithelial cells. Thus studies on human airway epithelial cell lines and primary cells in vitro that propose to examine the effect of mutations in CFTR on the inflammatory response to P. aeruginosa have uncertain clinical significance with regard to CF.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2012
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...