GLORIA

GEOMAR Library Ocean Research Information Access

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hindawi Limited  (1)
  • Costa-Silva, Daniela  (1)
  • 2015-2019  (1)
Material
Publisher
  • Hindawi Limited  (1)
Language
Years
  • 2015-2019  (1)
Year
  • 1
    In: Advances in Materials Science and Engineering, Hindawi Limited, Vol. 2015 ( 2015), p. 1-8
    Abstract: Biomedical materials for bone therapy are usually assessed for their biocompatibility and safety employing animal models or in vitro monolayer cell culture assays. However, alternative in vitro models may offer controlled conditions closer to physiological responses and reduce animal testing. In this work, we developed a 3D spheroidal cell culture with potential to evaluate simultaneously material-cell and cell-cell interactions. Different cell densities of murine MC3T3-E1 preosteoblasts or human primary osteoblasts (HOb) were used to determine the ideal procedure of spheroidal cultures and their adequacy to material testing. Cells were seeded on 96-well plates coated with agar and incubated in agitation from 1 to 7 days. Aggregate morphology was qualitatively evaluated considering the shape, size, repeatability, handling, and stability of spheroids. Higher cell densities induced more stable spheroids, and handling was considered appropriate starting from 2 × 10 4 cells. Confocal microscopy and Scanning Electron Microscopy indicate that most cells within the aggregate core are viable. Exposure to positive controls has shown a dose dependent cell death as measured by XTT assay. Aggregates were stable and presented good viability when employed on standardized testing of metallic and polymer-based biomaterials. Therefore, osteoblast spheroids may provide a promising tool for material screening and biocompatibility testing.
    Type of Medium: Online Resource
    ISSN: 1687-8434 , 1687-8442
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2015
    detail.hit.zdb_id: 2501025-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...