GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Constantin, Mariana  (1)
  • Purcar, Violeta  (1)
  • 2020-2024  (1)
Material
Publisher
Language
Years
  • 2020-2024  (1)
Year
  • 1
    In: Coatings, MDPI AG, Vol. 12, No. 2 ( 2022-02-13), p. 242-
    Abstract: The main goal of this study was to present a facile and inexpensive approach for the preparation of hybrid coatings by the deposition under ambient air conditions of silver-based silica materials on glass substrates, which can be used to improve solar cells’ performance. The silica materials containing silver nanoparticles (AgNPs) were synthesized by the hydrolytic condensation of tetraethylorthosilicate (TEOS), triethoxymethylsilane (MTES), and trimethoxyhexadecylsilane (HDTMES), under acidic conditions, at room temperature (25 ± 2 °C). The silver nitrate solution (AgNO3, 0.1 wt. %) was used as a source of Ag+ ions. The final samples were investigated through Fourier Transform Infrared Spectroscopy–Attenuated Total Reflectance (FTIR–ATR), Transmission Electron Microscopy equipped with energy dispersive X–ray (TEM–EDX), UV–Vis spectroscopy, Atomic Force Microscopy (AFM), and Raman Spectroscopy (RS). The TEM images confirmed the formation of AgNPs and were found to be around 3 nm. It was observed that AgNPs were embedded in the silica matrix. EDX also confirmed the presence of the resulting AgNPs within the silica material. AFM images demonstrated that the morphology of the hybrid films’ surfaces can be changed as a function of sol–gel composition. RS analysis indicated that silanol groups were significantly present on the silver-based silica film surface. The UV–Vis spectra revealed that the hybrid coatings presented a reflectance of ~8%, at 550 nm. This study will enhance the value of nanocoating technology in optoelectronics, particularly in the development of nanostructures that improve the performance in thin-film solar cells.
    Type of Medium: Online Resource
    ISSN: 2079-6412
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662314-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...