GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Molecules, MDPI AG, Vol. 27, No. 2 ( 2022-01-15), p. 537-
    Abstract: Saponins are plant and marine animal specific metabolites that are commonly considered as molecular vectors for chemical defenses against unicellular and pluricellular organisms. Their toxicity is attributed to their membranolytic properties. Modifying the molecular structures of saponins by quantitative and selective chemical reactions is increasingly considered to tune the biological properties of these molecules (i) to prepare congeners with specific activities for biomedical applications and (ii) to afford experimental data related to their structure–activity relationship. In the present study, we focused on the sulfated saponins contained in the viscera of Holothuria scabra, a sea cucumber present in the Indian Ocean and abundantly consumed on the Asian food market. Using mass spectrometry, we first qualitatively and quantitatively assessed the saponin content within the viscera of H. scabra. We detected 26 sulfated saponins presenting 5 different elemental compositions. Microwave activation under alkaline conditions in aqueous solutions was developed and optimized to quantitatively and specifically induce the desulfation of the natural saponins, by a specific loss of H2SO4. By comparing the hemolytic activities of the natural and desulfated extracts, we clearly identified the sulfate function as highly responsible for the saponin toxicity.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of the American Society for Mass Spectrometry, American Chemical Society (ACS), Vol. 30, No. 11 ( 2019-11-01), p. 2228-2237
    Type of Medium: Online Resource
    ISSN: 1044-0305
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2019
    detail.hit.zdb_id: 1073671-2
    detail.hit.zdb_id: 2019911-9
    detail.hit.zdb_id: 2004476-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Molecules Vol. 28, No. 5 ( 2023-02-23), p. 2087-
    In: Molecules, MDPI AG, Vol. 28, No. 5 ( 2023-02-23), p. 2087-
    Abstract: Escins constitute an abundant family of saponins (saponosides) and are the most active components in Aesculum hippocastanum (horse chestnut—HC) seeds. They are of great pharmaceutical interest as a short-term treatment for venous insufficiency. Numerous escin congeners (slightly different compositions), as well as numerous regio-and stereo-isomers, are extractable from HC seeds, making quality control trials mandatory, especially since the structure–activity relationship (SAR) of the escin molecules remains poorly described. In the present study, mass spectrometry, microwave activation, and hemolytic activity assays were used to characterize escin extracts (including a complete quantitative description of the escin congeners and isomers), modify the natural saponins (hydrolysis and transesterification) and measure their cytotoxicity (natural vs. modified escins). The aglycone ester groups characterizing the escin isomers were targeted. A complete quantitative analysis, isomer per isomer, of the weight content in the saponin extracts as well as in the seed dry powder is reported for the first time. An impressive 13% in weight of escins in the dry seeds was measured, confirming that the HC escins must be absolutely considered for high-added value applications, provided that their SAR is established. One of the objectives of this study was to contribute to this development by demonstrating that the aglycone ester functions are mandatory for the toxicity of the escin derivative, and that the cytotoxicity also depends on the relative position of the ester functions on the aglycone.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wiley ; 2023
    In:  Mass Spectrometry Reviews Vol. 42, No. 3 ( 2023-05), p. 954-983
    In: Mass Spectrometry Reviews, Wiley, Vol. 42, No. 3 ( 2023-05), p. 954-983
    Abstract: Saponins are amphiphilic molecules of pharmaceutical interest and most of their biological activities (i.e., cytotoxic, hemolytic, fungicide, etc.) are associated to their membranolytic properties. These molecules are secondary metabolites present in numerous plants and in some marine animals, such as sea cucumbers and starfishes. Structurally, all saponins correspond to the combination of a hydrophilic glycan, consisting of sugar chain(s), linked to a hydrophobic triterpenoidic or steroidic aglycone, named the sapogenin. Saponins present a high structural diversity and their structural characterization remains extremely challenging. Ideally, saponin structures are best established using nuclear magnetic resonance experiments conducted on isolated molecules. However, the extreme structural diversity of saponins makes them challenging from a structural analysis point of view since, most of the time, saponin extracts consist in a huge number of congeners presenting only subtle structural differences. In the present review, we wish to offer an overview of the literature related to the development of mass spectrometry for the study of saponins. This review will demonstrate that most of the past and current mass spectrometry methods, including electron, electrospray and matrix‐assisted laser desorption/ionization ionizations, gas/liquid chromatography coupled to (tandem) mass spectrometry, collision‐induced dissociation including MS 3 experiments, multiple reaction monitoring based quantification, ion mobility experiments, and so forth, have been used for saponin investigations with great success on enriched extracts but also directly on tissues using imaging methods.
    Type of Medium: Online Resource
    ISSN: 0277-7037 , 1098-2787
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 787244-6
    detail.hit.zdb_id: 1491946-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Molecules, MDPI AG, Vol. 27, No. 10 ( 2022-05-17), p. 3211-
    Abstract: Saponins are specific metabolites abundantly present in plants and several marine animals. Their high cytotoxicity is associated with their membranolytic properties, i.e., their propensity to disrupt cell membranes upon incorporation. As such, saponins are highly attractive for numerous applications, provided the relation between their molecular structures and their biological activities is understood at the molecular level. In the present investigation, we focused on the bidesmosidic saponins extracted from the quinoa husk, whose saccharidic chains are appended on the aglycone via two different linkages, a glycosidic bond, and an ester function. The later position is sensitive to chemical modifications, such as hydrolysis and methanolysis. We prepared and characterized three sets of saponins using mass spectrometry: (i) bidesmosidic saponins directly extracted from the ground husk, (ii) monodesmosidic saponins with a carboxylic acid group, and (iii) monodesmosidic saponins with a methyl ester function. The impact of the structural modifications on the membranolytic activity of the saponins was assayed based on the determination of their hemolytic activity. The natural bidesmosidic saponins do not present any hemolytic activity even at the highest tested concentration (500 µg·mL−1). Hydrolyzed saponins already degrade erythrocytes at 20 µg·mL−1, whereas 100 µg·mL−1 of transesterified saponins is needed to induce detectable activity. The observation that monodesmosidic saponins, hydrolyzed or transesterified, are much more active against erythrocytes than the bidesmosidic ones confirms that bidesmosidic saponins are likely to be the dormant form of saponins in plants. Additionally, the observation that negatively charged saponins, i.e., the hydrolyzed ones, are more hemolytic than the neutral ones could be related to the red blood cell membrane structure.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Wiley ; 2019
    In:  Rapid Communications in Mass Spectrometry Vol. 33, No. S2 ( 2019-07), p. 22-33
    In: Rapid Communications in Mass Spectrometry, Wiley, Vol. 33, No. S2 ( 2019-07), p. 22-33
    Abstract: Saponins are natural compounds presenting a high structural diversity whose structural characterization remains extremely challenging. Ideally, saponin structures are best established using nuclear magnetic resonance experiments conducted on isolated molecules. However, saponins are also increasingly characterized using tandem mass spectrometry (MS/MS) coupled with liquid chromatography, even if collision‐induced dissociation (CID) experiments are often quite limited in accurately determining the saponin structure. Methods We consider here ion mobility mass spectrometry (IMMS) as an orthogonal tool for the structural characterization of saponin isomers by comparing the experimental collisional cross sections (CCSs) of saponin ions with theoretical CCSs for candidate ion structures. Indeed, state‐of‐the‐art theoretical calculations perfectly complement the experimental results, allowing the ion structures to be deciphered at the molecular level. Results We demonstrate that ion mobility can contribute to the structural characterization of saponins because different saponin ions present significantly distinct CCSs. Depending on the nature of the cation (in the positive ion mode), the differences in CCSs can also be exacerbated, optimizing the gas‐phase separation. When associated with molecular dynamics simulations, the CCS data can be used to describe the interactions between the cations, i.e. H + , Na + and K + , and the saponin molecules at a molecular level. Conclusions Our work contributes to resolve the relationship between the primary and secondary structures of saponin ions. However, it is obvious that the structural diversity and complexity of the saponins cannot be definitively unraveled by measuring a single numerical value, here the CCS. Consequently, the structural characterization of unknown saponins will be difficult to achieve based on IMMS alone. Nevertheless, we demonstrated that monodesmosidic and bidesmosidic saponins can be distinguished via IMMS.
    Type of Medium: Online Resource
    ISSN: 0951-4198 , 1097-0231
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2002158-6
    detail.hit.zdb_id: 58731-X
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Molecules, MDPI AG, Vol. 25, No. 7 ( 2020-04-09), p. 1731-
    Abstract: Saponins are plant secondary metabolites. There are associated with defensive roles due to their cytotoxicity and are active against microorganisms. Saponins are frequently targeted to develop efficient drugs. Plant biomass containing saponins deserves sustained interest to develop high-added value applications. A key issue when considering the use of saponins for human healthcare is their toxicity that must be modulated before envisaging any biomedical application. This can only go through understanding the saponin-membrane interactions. Quinoa is abundantly consumed worldwide, but the quinoa husk is discarded due to its astringent taste associated with its saponin content. Here, we focus on the saponins of the quinoa husk extract (QE). We qualitatively and quantitively characterized the QE saponins using mass spectrometry. They are bidesmosidic molecules, with two oligosaccharidic chains appended on the aglycone with two different linkages; a glycosidic bond and an ester function. The latter can be hydrolyzed to prepare monodesmosidic molecules. The microwave-assisted hydrolysis reaction was optimized to produce monodesmosidic saponins. The membranolytic activity of the saponins was assayed based on their hemolytic activity that was shown to be drastically increased upon hydrolysis. In silico investigations confirmed that the monodesmosidic saponins interact preferentially with a model phospholipid bilayer, explaining the measured increased hemolytic activity.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of the Science of Food and Agriculture, Wiley, Vol. 100, No. 13 ( 2020-10), p. 4987-4994
    Abstract: Quinoa ( Chenopodium quinoa Willd) is an Andean original pseudocereal with high nutritional value. During quinoa processing, large amounts of saponin‐rich husks byproducts are obtained. Quinoa saponins, which are biologically active, could be used for various agriculture purposes. Silver nanoparticles have increasingly attracted attention for the management of crop diseases in agriculture. In this work, silver nanoparticles are synthesized by a sustainable and green method, using quinoa husk saponin extract (QE) to evaluate their potential for application in agriculture as biostimulants. RESULTS Quinoa extract was obtained and characterized by liquid chromatography with tandem mass spectrometry (LC–MS/MS). Sixteen saponin congeners were successfully identified and quantified. The QE obtained was used as a reducing agent for silver ions to synthesize silver nanoparticles (QEAgNPs) under mild conditions. The morphology, particle size, and stability of Ag nanoparticles were investigated by transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV‐visible), energy‐dispersive X‐ray (EDS), zeta potential, and Fourier transform infrared spectroscopy with attenuated total reflection (FTIR‐ATR). Ultraviolet–visible spectroscopy measurements confirmed the formation of silver nanoparticles in the presence of QE, with estimated particle sizes in a range between 5 and 50 nm. According to the zeta potential values, highly stable nanoparticles were formed. The QE and QEAgNPs (200–1000 μg/mL) were also tested in radish seed bioassay to evaluate their phytotoxicity. The seed germination assays revealed that QEAgNPs possessed a phytostimulant effect on radish seeds in a dose‐dependent manner, and no phytotoxicity was observed for both QE and QEAgNPs. CONCLUSION Silver nanoparticles obtained by a so‐called ‘green’ method could be considered as good candidates for application in the agricultural sector for seed treatment, or as foliar sprays and plant‐growth‐promoters. © 2020 Society of Chemical Industry
    Type of Medium: Online Resource
    ISSN: 0022-5142 , 1097-0010
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2001807-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2017
    In:  Analytical and Bioanalytical Chemistry Vol. 409, No. 12 ( 2017-5), p. 3115-3126
    In: Analytical and Bioanalytical Chemistry, Springer Science and Business Media LLC, Vol. 409, No. 12 ( 2017-5), p. 3115-3126
    Type of Medium: Online Resource
    ISSN: 1618-2642 , 1618-2650
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 1459122-4
    detail.hit.zdb_id: 2071767-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Marine Drugs, MDPI AG, Vol. 17, No. 6 ( 2019-06-13), p. 352-
    Abstract: Echinoderms form a remarkable phylum of marine invertebrates that present specific chemical signatures unique in the animal kingdom. It is particularly the case for essential triterpenoids that evolved separately in each of the five echinoderm classes. Indeed, while most animals have Δ5-sterols, sea cucumbers (Holothuroidea) and sea stars (Asteroidea) also possess Δ7 and Δ9(11)-sterols, a characteristic not shared with brittle stars (Ophiuroidea), sea urchins (Echinoidea), and crinoids (Crinoidea). These particular Δ7 and Δ9(11) sterols emerged as a self-protection against membranolytic saponins that only sea cucumbers and sea stars produce as a defense mechanism. The diversity of saponins is large; several hundred molecules have been described in the two classes of these saponins (i.e., triterpenoid or steroid saponins). This review aims to highlight the diversity of triterpenoids in echinoderms by focusing on sterols and triterpenoid glycosides, but more importantly to provide an updated view of the biosynthesis of these molecules in echinoderms.
    Type of Medium: Online Resource
    ISSN: 1660-3397
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2175190-0
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...