GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Codina, Esteban  (4)
  • Gamez-Montero, Pedro Javier  (4)
Material
Publisher
Person/Organisation
Language
Years
  • 1
    In: Energies, MDPI AG, Vol. 14, No. 9 ( 2021-05-09), p. 2707-
    Abstract: In recent years, much research has focused on reducing the power consumption of mobile hydraulic machines due to rising fuel costs, regulations on combustion engine emissions and the need to reduce the size and weight of the storage devices in hybrid drives. Current approaches to improve the energy efficiency of a hydraulic system can be classified into four basic groups: reduction of the energy demand, recovery of part of the supplied energy (ERS systems), regeneration of part of the supplied energy and reuse of the recovered and regenerated energy (hybrid systems). Today’s mobile hydraulic systems are often complex, perform different tasks and work under different load conditions, which makes it difficult to analyse energy losses. A study of the energy losses of a hydraulic system from different points of view, such as an energy balance for a complete machine cycle, an analysis of the individual cycle phases and a power analysis for the different operation quadrants of the actuators, can give an global picture of the energy losses, being very useful to rate its energy efficiency, identify main power losses and decide which of the different energy-saving techniques to apply. This paper describes the data collection process, its analysis from various points of view and the summary of the results in easy to understand charts as useful tools to identify and quantify the main energy losses. Only system architecture losses are considered. Losses in the ICE engine or the electric motor, hydraulic pump losses and mechanical losses are outside the scope of this study.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Sustainability Vol. 13, No. 6 ( 2021-03-11), p. 3089-
    In: Sustainability, MDPI AG, Vol. 13, No. 6 ( 2021-03-11), p. 3089-
    Abstract: This article presents a methodology for predicting the fluid dynamic behavior of a gear pump over its operating range. Complete pump parameterization was carried out through standard tests, and these parameters were used to create a bond graph model to simulate the behavior of the unit. This model was experimentally validated under working conditions in field tests. To carry this out, the pump was used to drive the auxiliary movements of a drilling machine, and the experimental data were compared with a simulation of the volumetric behavior under the same conditions. This paper aims to describe a method for characterizing any hydrostatic pump as a “black box” model predicting its behavior in any operating condition. The novelty of this method is based on the correspondence between the variation of the parameters and the internal changes of the unit when working in real conditions, that is, outside a test bench.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Energies Vol. 14, No. 24 ( 2021-12-18), p. 8553-
    In: Energies, MDPI AG, Vol. 14, No. 24 ( 2021-12-18), p. 8553-
    Abstract: This article presents the modeling, simulation and experimental validation of the movement of the floating bearing bushing in an external gear pump. As a starting point, a complete pump parameterization was carried out through standard tests, and these parameters were used in a first bond graph model in order to simulate the gear pump behavior. This model was experimentally validated under working conditions in field tests. Then, a sophisticated bond graph model of the movement of the floating bushing was developed from the equations that define its lubrication. Finally, as a result, both models were merged by integrating the dynamics of the floating bushing bearing with the variation of the characteristic parameters (loss coefficients). Finally, the final model was experimentally validated both in laboratory and field tests by assembling the pump in a drilling machine to drive the auxiliary movements. The novelty of this article is the conception and construction of a simple and experimentally validated tool for the study of a gear pump, which relates its macroscopic behavior as a black box (defined by the loss coefficients) to the internal changes of the unit (defined by its internal lubrication).
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Actuators Vol. 12, No. 9 ( 2023-08-22), p. 338-
    In: Actuators, MDPI AG, Vol. 12, No. 9 ( 2023-08-22), p. 338-
    Abstract: A new approach to model the motion of floating bushings in external gear pumps is presented in this article, where lubrication conditions have been introduced using dimensional analysis. This model is based on Bond Graph diagrams and has been experimentally validated in lab tests measuring the movement of the floating bushing inside the gear pump by means of laser micrometers. The novelty of this research is the creation of a simple and experimentally validated tool for the behaviour study of these types of pumps, which allows the simulation of a dynamic rigid solid in a fluid boundary with clearances of the order of microns, without using powerful CFD tools, with very short execution times, and using conventional computational tools. The qualitative behaviour of the model with respect to the experimental results is very similar, adjusting the numerical values with very acceptable accuracies by taking into account the precision of the experimental measurements, and allows us to use the model to interpret the volumetric and mechanical efficiency variations according the operating conditions.
    Type of Medium: Online Resource
    ISSN: 2076-0825
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2682469-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...