GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Diabetes Association  (3)
  • Clish, Clary  (3)
  • 1
    In: Diabetes, American Diabetes Association, Vol. 68, No. 12 ( 2019-12-01), p. 2337-2349
    Abstract: Novel biomarkers of type 2 diabetes (T2D) and response to preventative treatment in individuals with similar clinical risk may highlight metabolic pathways that are important in disease development. We profiled 331 metabolites in 2,015 baseline plasma samples from the Diabetes Prevention Program (DPP). Cox models were used to determine associations between metabolites and incident T2D, as well as whether associations differed by treatment group (i.e., lifestyle [ILS], metformin [MET] , or placebo [PLA]), over an average of 3.2 years of follow-up. We found 69 metabolites associated with incident T2D regardless of treatment randomization. In particular, cytosine was novel and associated with the lowest risk. In an exploratory analysis, 35 baseline metabolite associations with incident T2D differed across the treatment groups. Stratification by baseline levels of several of these metabolites, including specific phospholipids and AMP, modified the effect that ILS or MET had on diabetes development. Our findings highlight novel markers of diabetes risk and preventative treatment effect in individuals who are clinically at high risk and motivate further studies to validate these interactions.
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2019
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Diabetes Association ; 2015
    In:  Diabetes Vol. 64, No. 8 ( 2015-08-01), p. 3010-3016
    In: Diabetes, American Diabetes Association, Vol. 64, No. 8 ( 2015-08-01), p. 3010-3016
    Abstract: Experimental studies have suggested possible protective effects of dimethylglycine (DMG) on glucose metabolism. DMG is degraded to glycine through a DMG-dehydrogenase (DMGDH)-catalyzed reaction, and this is the only known pathway for the breakdown of DMG in mammals. In this study, we aimed to identify the strongest genetic determinant of circulating DMG concentration and to investigate its associations with metabolic traits and incident diabetes. In the cohort with full metabolomics data (n = 709), low plasma levels of DMG were significantly associated with higher blood glucose levels (P = 3.9E–4). In the genome-wide association study (GWAS) of the discovery cohort (n = 5,205), the strongest genetic signal of plasma DMG was conferred by rs2431332 at the DMGDH locus, where the major allele was associated with lower DMG levels (P = 2.5E–15). The same genetic variant (major allele of rs2431332) was also significantly associated with higher plasma insulin (P = 0.019), increased HOMA insulin resistance (P = 0.019), and an increased risk of incident diabetes (P = 0.001) in the pooled analysis of the discovery cohort together with the two replication cohorts (n = 20,698 and n = 7,995). These data are consistent with a possible causal role of DMG deficiency in diabetes development and encourage future studies examining if inhibition of DMGDH, or alternatively, supplementation of DMG, might prove useful for the treatment/prevention of diabetes.
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2015
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Diabetes, American Diabetes Association, Vol. 65, No. 5 ( 2016-05-01), p. 1424-1433
    Abstract: Identifying novel biomarkers of type 2 diabetes risk may improve prediction and prevention among individuals at high risk of the disease and elucidate new biological pathways relevant to diabetes development. We performed plasma metabolite profiling in the Diabetes Prevention Program (DPP), a completed trial that randomized high-risk individuals to lifestyle, metformin, or placebo interventions. Previously reported markers, branched-chain and aromatic amino acids and glutamine/glutamate, were associated with incident diabetes (P & lt; 0.05 for all), but these associations were attenuated upon adjustment for clinical and biochemical measures. By contrast, baseline levels of betaine, also known as glycine betaine (hazard ratio 0.84 per SD log metabolite level, P = 0.02), and three other metabolites were associated with incident diabetes even after adjustment. Moreover, betaine was increased by the lifestyle intervention, which was the most effective approach to preventing diabetes, and increases in betaine at 2 years were also associated with lower diabetes incidence (P = 0.01). Our findings indicate betaine is a marker of diabetes risk among high-risk individuals both at baseline and during preventive interventions and they complement animal models demonstrating a direct role for betaine in modulating metabolic health.
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2016
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...