GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Clark, D.  (2)
  • Stadermann, M.  (2)
Material
Language
Years
  • 1
    In: Nuclear Fusion, IOP Publishing, Vol. 59, No. 11 ( 2019-11-01), p. 112018-
    Abstract: Indirect drive converts high power laser light into x-rays using small high- Z cavities called hohlraums. X-rays generated at the hohlraum walls drive a capsule filled with deuterium–tritium (DT) fuel to fusion conditions. Recent experiments have produced fusion yields exceeding 50 kJ where alpha heating provides ~3×  increase in yield over PdV work. Closing the gaps toward ignition is challenging, requiring optimization of the target/implosions and the laser to extract maximum energy. The US program has a three-pronged approach to maximize target performance, each closing some portion of the gap. The first item is optimizing the hohlraum to couple more energy to the capsule while maintaining symmetry control. Novel hohlraum designs are being pursued that enable a larger capsule to be driven symmetrically to both reduce 3D effects and increase energy coupled to the capsule. The second issue being addressed is capsule stability. Seeding of instabilities by the hardware used to mount the capsule and fill it with DT fuel remains a concern. Work reducing the impact of the DT fill tubes and novel capsule mounts is being pursed to reduce the effect of mix on the capsule implosions. There is also growing evidence native capsule seeds such as a micro-structure may be playing a role on limiting capsule performance and dedicated experiments are being developed to better understand the phenomenon. The last area of emphasis is the laser. As technology progresses and understanding of laser damage/mitigation advances, increasing the laser energy seems possible. This would increase the amount of energy available to couple to the capsule, and allow larger capsules, potentially increasing the hot spot pressure and confinement time. The combination of each of these focus areas has the potential to produce conditions to initiate thermo-nuclear ignition.
    Type of Medium: Online Resource
    ISSN: 0029-5515 , 1741-4326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 2037980-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Physics of Plasmas, AIP Publishing, Vol. 27, No. 9 ( 2020-09-01)
    Abstract: Mix of high-Z material from the capsule into the fuel can severely degrade the performance of inertial fusion implosions. On the Hybrid B campaign, testing the largest high-density-carbon capsules yet fielded at the National Ignition Facility, several shots show signatures of high levels of hot-spot mix. We attribute a ∼40% yield degradation on these shots to the hot-spot mix, comparable to the level of degradation from large P2 asymmetries observed on some shots. A range of instability growth factors and diamond crystallinity were tested and they do not determine the level of mix for these implosions, which is instead set by the capsule quality.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...