GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chu, Ching-Wu  (19)
  • Natural Sciences  (19)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2016
    In:  Proceedings of the National Academy of Sciences Vol. 113, No. 29 ( 2016-07-19)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 29 ( 2016-07-19)
    Abstract: Complex Zintl phases, especially antimony (Sb)-based YbZn 0.4 Cd 1.6 Sb 2 with figure-of-merit ( ZT ) of ∼1.2 at 700 K, are good candidates as thermoelectric materials because of their intrinsic “electron–crystal, phonon–glass” nature. Here, we report the rarely studied p-type bismuth (Bi)-based Zintl phases (Ca,Yb,Eu)Mg 2 Bi 2 with a record thermoelectric performance. Phase-pure EuMg 2 Bi 2 is successfully prepared with suppressed bipolar effect to reach ZT ∼ 1. Further partial substitution of Eu by Ca and Yb enhanced ZT to ∼1.3 for Eu 0.2 Yb 0.2 Ca 0.6 Mg 2 Bi 2 at 873 K. Density-functional theory (DFT) simulation indicates the alloying has no effect on the valence band, but does affect the conduction band. Such band engineering results in good p-type thermoelectric properties with high carrier mobility. Using transmission electron microscopy, various types of strains are observed and are believed to be due to atomic mass and size fluctuations. Point defects, strain, dislocations, and nanostructures jointly contribute to phonon scattering, confirmed by the semiclassical theoretical calculations based on a modified Debye–Callaway model of lattice thermal conductivity. This work indicates Bi-based (Ca,Yb,Eu)Mg 2 Bi 2 is better than the Sb-based Zintl phases.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2017
    In:  Proceedings of the National Academy of Sciences Vol. 114, No. 22 ( 2017-05-30), p. 5607-5611
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 114, No. 22 ( 2017-05-30), p. 5607-5611
    Abstract: Commercial hydrogen production by electrocatalytic water splitting will benefit from the realization of more efficient and less expensive catalysts compared with noble metal catalysts, especially for the oxygen evolution reaction, which requires a current density of 500 mA/cm 2 at an overpotential below 300 mV with long-term stability. Here we report a robust oxygen-evolving electrocatalyst consisting of ferrous metaphosphate on self-supported conductive nickel foam that is commercially available in large scale. We find that this catalyst, which may be associated with the in situ generated nickel–iron oxide/hydroxide and iron oxyhydroxide catalysts at the surface, yields current densities of 10 mA/cm 2 at an overpotential of 177 mV, 500 mA/cm 2 at only 265 mV, and 1,705 mA/cm 2 at 300 mV, with high durability in alkaline electrolyte of 1 M KOH even after 10,000 cycles, representing activity enhancement by a factor of 49 in boosting water oxidation at 300 mV relative to the state-of-the-art IrO 2 catalyst.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2011
    In:  Proceedings of the National Academy of Sciences Vol. 108, No. 38 ( 2011-09-20), p. 15705-15709
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 108, No. 38 ( 2011-09-20), p. 15705-15709
    Abstract: We report the detection of unusual superconductivity up to 49 K in single crystalline CaFe 2 As 2 via electron-doping by partial replacement of Ca by rare-earth. The superconducting transition observed suggests the possible existence of two phases: one starting at 49 K, which has a low critical field 〈  4 Oe, and the other at 21 K, with a much higher critical field 〉  5 T. Our observations are in strong contrast to previous reports of doping or pressurizing layered compounds AeFe 2 As 2 (or Ae122), where Ae = Ca, Sr, or Ba. In Ae122, hole-doping has been previously observed to generate superconductivity with a transition temperature ( T c ) only up to 38 K and pressurization has been reported to produce superconductivity with a T c up to 30 K. The unusual 49 K phase detected will be discussed.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2011
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 44 ( 2019-10-29), p. 21998-22003
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 44 ( 2019-10-29), p. 21998-22003
    Abstract: We report enhanced thermoelectric performance of SnTe by further increasing its intrinsic high carrier concentration caused by Sn vacancies in contrast to the traditional method. Along with In 2 Te 3 alloying, which results in an enhanced Seebeck coefficient, Li 2 Te is added to further increase the carrier concentration in order to maintain high electrical conductivity. Finally, a relatively high PF ave of ∼28 μW cm −1 K −2 in the range between 300 and 873 K is obtained in an optimized SnTe-based compound. Furthermore, nanoprecipitates with extremely high density are constructed to scatter phonons strongly, resulting in an ultralow lattice thermal conductivity of ∼0.45 W m −1 K −1 at 873 K. Given that the Z value is temperature dependent, the ( ZT ) eng and ( PF ) eng values are adopted to accurately predict the performance of this material. Taking into account the Joule and Thomson heat, output power density of ∼5.53 W cm −2 and leg efficiency of ∼9.6% are calculated for (SnTe) 2.94 (In 2 Te 3 ) 0.02 -(Li 2 Te) 0.045 with a leg length of 4 mm and cold- and hot-side temperatures of 300 and 870 K, respectively.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2020
    In:  Proceedings of the National Academy of Sciences Vol. 117, No. 16 ( 2020-04-21), p. 8783-8787
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 16 ( 2020-04-21), p. 8783-8787
    Abstract: A skyrmion state in a noncentrosymmetric helimagnet displays topologically protected spin textures with profound technological implications for high-density information storage, ultrafast spintronics, and effective microwave devices. Usually, its equilibrium state in a bulk helimagnet occurs only over a very restricted magnetic field–temperature phase space and often in the low-temperature region near the magnetic transition temperature T c . We have expanded and enhanced the skyrmion phase region from the small range of 55 to 58.5 K to 5 to 300 K in single-crystalline Cu 2 OSeO 3 by pressures up to 42.1 GPa through a series of phase transitions from the cubic P 2 1 3, through orthorhombic P 2 1 2 1 2 1 and monoclinic P 2 1 , and finally to the triclinic P 1 phase, using our newly developed ultrasensitive high-pressure magnetization technique. The results are in agreement with our Ginzburg–Landau free energy analyses, showing that pressures tend to stabilize the skyrmion states and at higher temperatures. The observations also indicate that the skyrmion state can be achieved at higher temperatures in various crystal symmetries, suggesting the insensitivity of skyrmions to the underlying crystal lattices and thus the possible more ubiquitous presence of skyrmions in helimagnets.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2018
    In:  Proceedings of the National Academy of Sciences Vol. 115, No. 21 ( 2018-05-22), p. 5332-5337
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 21 ( 2018-05-22), p. 5332-5337
    Abstract: Germanium telluride (GeTe)-based materials, which display intriguing functionalities, have been intensively studied from both fundamental and technological perspectives. As a thermoelectric material, though, the phase transition in GeTe from a rhombohedral structure to a cubic structure at ∼700 K is a major obstacle impeding applications for energy harvesting. In this work, we discovered that the phase-transition temperature can be suppressed to below 300 K by a simple Bi and Mn codoping, resulting in the high performance of cubic GeTe from 300 to 773 K. Bi doping on the Ge site was found to reduce the hole concentration and thus to enhance the thermoelectric properties. Mn alloying on the Ge site simultaneously increased the hole effective mass and the Seebeck coefficient through modification of the valence bands. With the Bi and Mn codoping, the lattice thermal conductivity was also largely reduced due to the strong point-defect scattering for phonons, resulting in a peak thermoelectric figure of merit ( ZT ) of ∼1.5 at 773 K and an average ZT of ∼1.1 from 300 to 773 K in cubic Ge 0.81 Mn 0.15 Bi 0.04 Te. Our results open the door for further studies of this exciting material for thermoelectric and other applications.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 8 ( 2019-02-19), p. 2831-2836
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 8 ( 2019-02-19), p. 2831-2836
    Abstract: Zintl compounds are considered to be potential thermoelectric materials due to their “phonon glass electron crystal” (PGEC) structure. A promising Zintl-phase thermoelectric material, 2-1-2–type Eu 2 ZnSb 2 ( P 6 3 / mmc ), was prepared and investigated. The extremely low lattice thermal conductivity is attributed to the external Eu atomic layers inserted in the [Zn 2 Sb 2 ] 2- network in the structure of 1-2-2–type EuZn 2 Sb 2 ( P 3 ¯ m 1 ) , as well as the abundant inversion domain boundary. By regulating the Zn deficiency, the electrical properties are significantly enhanced, and the maximum ZT value reaches ∼1.0 at 823 K for Eu 2 Zn 0.98 Sb 2 . Our discovery provides a class of Zintl thermoelectric materials applicable in the medium-temperature range.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2016
    In:  Proceedings of the National Academy of Sciences Vol. 113, No. 28 ( 2016-07-12), p. 7711-7716
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 28 ( 2016-07-12), p. 7711-7716
    Abstract: The current simple nanofluid flooding method for tertiary or enhanced oil recovery is inefficient, especially when used with low nanoparticle concentration. We have designed and produced a nanofluid of graphene-based amphiphilic nanosheets that is very effective at low concentration. Our nanosheets spontaneously approached the oil–water interface and reduced the interfacial tension in a saline environment (4 wt % NaCl and 1 wt % CaCl 2 ), regardless of the solid surface wettability. A climbing film appeared and grew at moderate hydrodynamic condition to encapsulate the oil phase. With strong hydrodynamic power input, a solid-like interfacial film formed and was able to return to its original form even after being seriously disturbed. The film rapidly separated oil and water phases for slug-like oil displacement. The unique behavior of our nanosheet nanofluid tripled the best performance of conventional nanofluid flooding methods under similar conditions.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2022
    In:  Proceedings of the National Academy of Sciences Vol. 119, No. 18 ( 2022-05-03)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 18 ( 2022-05-03)
    Abstract: Seawater electrolysis is an intriguing technology for sustainable hydrogen production that will not exacerbate the global shortage of freshwater or increase carbon emissions. However, due to the undesirable anodic chlorine evolution reaction and the strong corrosiveness of seawater, this technology is significantly hindered by a lack of robust oxygen evolution reaction (OER) electrocatalysts that exhibit high activity, high selectivity, and good stability. Here, we demonstrate a homogeneous multimetallic catalyst consisting of Ni and Fe coincorporated into CuCo layered double hydroxide (denoted as NiFe-CuCo LDH) that serves as an active and durable OER electrode for high-performance seawater electrolysis. With abundant exposed multimetal sites and well-defined micronanostructures, the NiFe-CuCo LDH catalyst requires overpotentials of only 259, 278, and 283 mV to yield current densities of 100, 300, and 500 mA cm −2 , respectively, in 6 M KOH seawater electrolyte. Moreover, it exhibits very high OER selectivity (Faradaic efficiency of 97.4% for O 2 at 500 mA cm −2 ) and superior durability during operation, working stably under a large current density of 500 mA cm −2 for up to 500 h in 6 M KOH seawater electrolyte. This multimetallic electrocatalyst is one of the best performing ones among all reported transition-metal-based OER electrocatalysts in alkaline seawater electrolyte, which boosts the development of seawater electrolysis technology.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2014
    In:  Proceedings of the National Academy of Sciences Vol. 111, No. 30 ( 2014-07-29), p. 10966-10971
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 30 ( 2014-07-29), p. 10966-10971
    Abstract: Extraction of intracellular molecules is crucial to the study of cellular signal pathways. Disruption of the cellular membrane remains the established method to release intracellular contents, which inevitably terminates the time course of biological processes. Also, conventional laboratory extractions mostly use bulky materials that ignore the heterogeneity of each cell. In this work, we developed magnetized carbon nanotubes that can be sneaked into and out of cell bodies under a magnetic force. Using a testing model with overexpression of GFP, the nanotubes successfully transported the intracellular GFP out at the single-cell level. The confined nanoscale invasiveness did not change cell viability or proliferation. This study presents the proof of concept of a previously unidentified real-time and single-cell approach to investigate cellular biology, signal messengers, and therapeutic effects with nanomaterials.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...