GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 3713-3713
    Abstract: Approximately 10% of B-ALLs harbor CRLF2 rearrangements, which may portend a poor prognosis. Although these leukemias are addicted to JAK2 signaling, ATP-competitive type I JAK2 inhibitors have limited activity in vitro or in vivo (Weigert et al. J Exp Med 2012). This may result from heterodimerization of JAK2 with other JAK family members (Koppikar et al. Nature 2012). Type II inhibitors bind JAK2 in the inactive conformation, which may overcome this resistance. When assayed in MHH-CALL4 cells harboring a CRLF2/IGH rearrangement and JAK2 I682F mutation, the type II JAK2 inhibitors NVP-BBT594 and NVP-CHZ868 were 10-35-fold more potent than the type I JAK2 inhibitors NVP-BSK805 and NVP-BVB808. Similarly, in Ba/F3 cells dependent on CRLF2 and the gain-of-function allele JAK2 R683G, the IC50 for CHZ868 was 5-20-fold lower than the IC50s for BSK805 and BVB808. Unlike type I inhibitors, which induce paradoxical hyperphosphorylation of JAK2, CHZ868 completely blocks JAK2 and STAT5 phosphorylation. In addition, the JAK2 Y931C allele that confers 4-6-fold resistance to BSK805 and BVB808 did not alter sensitivity to CHZ868. CHZ868 abrogates STAT5 phosphorylation in Ba/F3 cells expressing CRLF2 with JAK2 R683G/Y931C while BVB808 does not. CHZ868 is the first type II JAK2 inhibitor amenable to in vivo use. We assessed its efficacy in mice transplanted with transgenic (CRLF2/JAK2 R683G/Cdkn2a-/- or CRLF2/JAK2 R683G/Pax5+/-/Ts1Rhr) or primary human CRLF2-rearranged B-ALLs. Splenocytes from patient-derived xenografts (PDXs) treated with CHZ868 in vivo for 3 days are more primed for apoptosis as demonstrated by a 2-6-fold EC50 reduction for PUMA permeabilizing activity compared to vehicle. Transcriptional profiling of splenocytes from CHZ868-treated PDXs revealed downregulation of critical survival pathways including E2F1, STAT3, and AKT-mediated signaling. Of note, 2 of the most downregulated genes are STAT targets, PIM1 and Myc. Mice treated for 5-6 days with CHZ868 had significant reductions in spleen size and complete loss of phospho-STAT5 in residual leukemia cells. In both murine leukemias and human xenografts, CHZ868 prolonged survival compared to controls (p 〈 0.001). BH3 profiling of splenocytes from PDXs treated until moribund showed a 2-4-fold increase in the EC50 for BIM compared to vehicle, consistent with decreased priming for apoptosis in the relapsed setting. To study mechanisms of resistance to type II JAK2 inhibitors, we screened a randomly mutagenized JAK2 R683G library expressed in Ba/F3-CRLF2 cells for clones resistant to BBT594. All 〉 30 clones sequenced harbored the same JAK2 L884P mutation. Ba/F3 cells expressing CRLF2 with JAK2 R683G/L884P displayed cross-resistance to CHZ868, while sensitivity to type I inhibitors was not affected. Structural modeling of the JAK2 JH1 domain suggested that L884P alters the binding pocket for type II inhibitors. JAK2 L884P is homologous to an EGFR L747P activating mutation, which destabilizes the P-loop and C-helix portion of the kinase domain (He et al. Clin Cancer Res 2012). The fact that L884P was reported in two B-ALL patients lacking additional JAK2 mutations (Torra et al. Blood (ASH Annual Meeting Abstracts) 2010) raised the possibility it was also an activating mutation. We confirmed L884P is an activating allele, as Ba/F3 cells expressing CRLF2, IL7R, and JAK2 L884P proliferated in the absence of TSLP ligand. To improve CHZ868 efficacy, we tested for synergy with multiple chemotherapy agents currently used in B-ALL treatment. Dexamethasone was the most highly synergistic with CHZ868 in MHH-CALL4 cells. To assess the combination in vivo, we treated mice transplanted with CRLF2/JAK2 R683G/Pax5+/-/Ts1Rhr murine B-ALL with vehicle, CHZ868, dexamethasone, or CHZ868 + dexamethasone for 14 days post engraftment. CHZ868 treatment prolonged survival compared to vehicle (p 〈 0.0001) or dexamethasone (p 〈 0.01), and the combination prolonged survival beyond CHZ868 monotherapy (p 〈 0.0001). In summary, the type II JAK2 inhibitor CHZ868 potently kills JAK2-dependent B-ALL and overcomes genetic resistance to type I inhibitors. CHZ868 prolongs survival in murine transgenic and human xenograft models and synergizes with dexamethasone in vivo. Thus, combination strategies using dexamethasone with type II JAK2 inhibitors merit testing in patients with relapsed or refractory JAK2-dependent B-ALL. Disclosures Hofmann: Novartis Institutes for BioMedical Research: Employment. Baffert:Novartis: Employment. Vangrevelinghe:Novartis Institutes for BioMedical Research: Employment. Gaul:Novartis: Employment. Radimerski:Novartis: Employment. Weinstock:Novartis: Consultancy, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 3567-3567
    Abstract: GNB1 encodes a beta subunit (Gβ) of heterotrimeric G proteins, which mediate signals downstream of G protein coupled receptors (GPCRs). We isolated a somatic mutant of GNB1 (K89E) by functional screening of a cDNA library derived from a blastic plasmacytoid dendritic cell neoplasm (BPDCN). A search of cancer genome databases identified recurrent mutations in GNB1 and the highly related protein GNB2. GNB1/2 K89E/T were found in B cell acute lymphoblastic leukemia (B-ALL) (1 case), follicular lymphoma (1) and myelodysplastic syndrome (MDS) (1) as well as BPDCN (1). Interestingly GNB1 K57E/T mutations were found only in myeloid diseases: [acute myeloid leukemia (2), atypical CML (2), polycythemia vera (1) and MDS (6)], while GNB1 I80N/T were found predominantly in B cell diseases [CLL (2), FL (2), DLBCL (1) and MDS (1)] . These mutated codons are all located on the GNB1 protein surface that is critical for interactions between Gβ and alpha subunits (Gα) or downstream effectors. Immunoprecipitation followed by mass spectrometry demonstrated that GNB1 K57E, I80T and K89E mutants failed to bind Gα, including GNAI2/3, GNA11/Q and GNA13 that are normally bound by wild-type (WT) GNB1. All mutations affecting these codons promoted cytokine-independent growth of human TF1 myeloid cells or mouse BaF3 lymphoid cells with activation of MEK/ERK and mTOR/PI3K pathways. Pertussis toxin treatment did not affect GNB1-dependent ERK activation or cell growth, implying a Gα-independent pathway. To investigate the function of GNB1 mutations in vivo, we performed a mouse bone marrow transplantation (BMT) experiment using wild-type and Cdkn2a-deficient donors. Loss of the cell cycle regulator CDKN2A is common in BPDCN, B-ALL, and several other hematologic malignancies. Bone marrow cells were isolated from 5-FU treated donor mice and infected with retrovirus expressing GNB1 WT, K57E, I80T or K89E. Transplantation of GNB1 mutant-expressing Cdkn2a-deficient bone marrow resulted in myeloid dendritic cell neoplasms that were CD11b+, CD11c+, CD19-, B220-, and CD3-. GNB1 mutants did not induce tumors in WT bone marrow after 12 months of observation suggesting that GNB1 requires additional cooperating mutations such as Cdkn2a loss. We performed the same BMT experiment using Cdkn2a-deficient bone morrow cells without 5-FU pretreatment. We found thatGNB1 I80T and K89E mutants induced a progenitor B cell ALL (CD11b-, CD11c-, CD19+, CD3-, TdT+). These data suggest that GNB1 mutations can promote tumorigenesis in more than one cell lineage, as observed in patients. In vivo treatment of the myeloid neoplasm with the dual PI3K/mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, we noted that GNB1 mutations co-occurred with oncogenic kinase alterations, including BCR/ABL, JAK2 V617F and BRAF V600K. Co-expression of patient-derived GNB1 alleles with the mutant kinases resulted in relative resistance to treatment with the corresponding kinase inhibitor in each context. Thus, GNB1 and GNB2 mutations confer transformation and targeted therapy resistance across a range of human tumors and may be targetable with inhibitors of PI3K/mTOR signaling. Disclosures Gotlib: Novartis Pharmaceuticals Corporation: Membership on an entity's Board of Directors or advisory committees, Research Funding, Travel Support Other. Deininger:BMS, Novartis, Celgene, Genzyme, Gilead: Research Funding; BMS, ARIAD, Novartis, Incyte, Pfizer: Advisory Board, Advisory Board Other; BMS, ARIAD, Novartis, Incyte, Pfizer: Consultancy. Tyner:Constellation Pharmaceuticals: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature Medicine, Springer Science and Business Media LLC, Vol. 21, No. 1 ( 2015-1), p. 71-75
    Type of Medium: Online Resource
    ISSN: 1078-8956 , 1546-170X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 1484517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...