GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hindawi Limited  (2)
  • Choi, Kyu Yeong  (2)
Material
Publisher
  • Hindawi Limited  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    Hindawi Limited ; 2019
    In:  Journal of Healthcare Engineering Vol. 2019 ( 2019-03-03), p. 1-13
    In: Journal of Healthcare Engineering, Hindawi Limited, Vol. 2019 ( 2019-03-03), p. 1-13
    Abstract: Alzheimer’s disease (AD) is a common neurodegenerative disease with an often seen prodromal mild cognitive impairment (MCI) phase, where memory loss is the main complaint progressively worsening with behavior issues and poor self-care. However, not all patients clinically diagnosed with MCI progress to the AD. Currently, several high-dimensional classification techniques have been developed to automatically distinguish among AD, MCI, and healthy control (HC) patients based on T1-weighted MRI. However, these method features are based on wavelets, contourlets, gray-level co-occurrence matrix, etc., rather than using clinical features which helps doctors to understand the pathological mechanism of the AD. In this study, a new approach is proposed using cortical thickness and subcortical volume for distinguishing binary and tertiary classification of the National Research Center for Dementia dataset (NRCD), which consists of 326 subjects. Five classification experiments are performed: binary classification, i.e., AD vs HC, HC vs mAD (MCI due to the AD), and mAD vs aAD (asymptomatic AD), and tertiary classification, i.e., AD vs HC vs mAD and AD vs HC vs aAD using cortical and subcortical features. Datasets were divided in a 70/30 ratio, and later, 70% were used for training and the remaining 30% were used to get an unbiased estimation performance of the suggested methods. For dimensionality reduction purpose, principal component analysis (PCA) was used. After that, the output of PCA was passed to various types of classifiers, namely, softmax, support vector machine (SVM), k -nearest neighbors, and naïve Bayes (NB) to check the performance of the model. Experiments on the NRCD dataset demonstrated that the softmax classifier is best suited for the AD vs HC classification with an F1 score of 99.06, whereas for other groups, the SVM classifier is best suited for the HC vs mAD, mAD vs aAD, and AD vs HC vs mAD classifications with the F1 scores being 99.51, 97.5, and 99.99, respectively. In addition, for the AD vs HC vs aAD classification, NB performed well with an F1 score of 95.88. In addition, to check our proposed model efficiency, we have also used the OASIS dataset for comparing with 9 state-of-the-art methods.
    Type of Medium: Online Resource
    ISSN: 2040-2295 , 2040-2309
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2019
    detail.hit.zdb_id: 2545054-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Healthcare Engineering, Hindawi Limited, Vol. 2020 ( 2020-09-01), p. 1-14
    Abstract: Alzheimer’s disease (AD) is one of the most common neurodegenerative illnesses (dementia) among the elderly. Recently, researchers have developed a new method for the instinctive analysis of AD based on machine learning and its subfield, deep learning. Recent state-of-the-art techniques consider multimodal diagnosis, which has been shown to achieve high accuracy compared to a unimodal prognosis. Furthermore, many studies have used structural magnetic resonance imaging (MRI) to measure brain volumes and the volume of subregions, as well as to search for diffuse changes in white/gray matter in the brain. In this study, T1-weighted structural MRI was used for the early classification of AD. MRI results in high-intensity visible features, making preprocessing and segmentation easy. To use this image modality, we acquired four types of datasets from each dataset’s server. In this work, we downloaded 326 subjects from the National Research Center for Dementia homepage, 123 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) homepage, 121 subjects from the Alzheimer’s Disease Repository Without Borders homepage, and 131 subjects from the National Alzheimer’s Coordinating Center homepage. In our experiment, we used the multiatlas label propagation with expectation–maximization-based refinement segmentation method. We segmented the images into 138 anatomical morphometry images (in which 40 features belonged to subcortical volumes and the remaining 98 features belonged to cortical thickness). The entire dataset was split into a 70 : 30 (training and testing) ratio before classifying the data. A principal component analysis was used for dimensionality reduction. Then, the support vector machine radial basis function classifier was used for classification between two groups—AD versus health control (HC) and early mild cognitive impairment (MCI) (EMCI) versus late MCI (LMCI). The proposed method performed very well for all four types of dataset. For instance, for the AD versus HC group, the classifier achieved an area under curve (AUC) of more than 89% for each dataset. For the EMCI versus LMCI group, the classifier achieved an AUC of more than 80% for every dataset. Moreover, we also calculated Cohen kappa and Jaccard index statistical values for all datasets to evaluate the classification reliability. Finally, we compared our results with those of recently published state-of-the-art methods.
    Type of Medium: Online Resource
    ISSN: 2040-2309 , 2040-2295
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2020
    detail.hit.zdb_id: 2545054-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...