GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Choi, Jung  (4)
  • Physics  (4)
Material
Language
Years
Subjects(RVK)
  • Physics  (4)
RVK
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2010
    In:  Journal of Climate Vol. 23, No. 5 ( 2010-03-01), p. 1226-1239
    In: Journal of Climate, American Meteorological Society, Vol. 23, No. 5 ( 2010-03-01), p. 1226-1239
    Abstract: Recent studies report that two types of El Niño events have been observed. One is the cold tongue (CT) El Niño, which is characterized by relatively large sea surface temperature (SST) anomalies in the eastern Pacific, and the other is the warm pool (WP) El Niño, in which SST anomalies are confined to the central Pacific. Here, both types of El Niño events are analyzed in a long-term coupled GCM simulation. The present model simulates the major observed features of both types of El Niño, incorporating the distinctive patterns of each oceanic and atmospheric variable. It is also demonstrated that each type of El Niño has quite distinct dynamic processes, which control their evolutions. The CT El Niño exhibits strong equatorial heat discharge poleward and thus the dynamical feedbacks control the phase transition from a warm event to a cold event. On the other hand, the discharge process in the WP El Niño is weak because of its spatial distribution of ocean dynamic field. The positive SST anomaly of WP El Niño is thermally damped through the intensified evaporative cooling.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2010
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2013
    In:  Journal of Climate Vol. 26, No. 5 ( 2013-03-01), p. 1485-1501
    In: Journal of Climate, American Meteorological Society, Vol. 26, No. 5 ( 2013-03-01), p. 1485-1501
    Abstract: Outputs from coupled general circulation models (CGCMs) are used in examining tropical Pacific decadal variability (TPDV) and their relationships with El Niño–Southern Oscillation (ENSO). Herein TPDV is classified as either ENSO-induced TPDV (EIT) or ENSO-like TPDV (ELT), based on their correlations with a decadal modulation index of ENSO amplitude and spatial pattern. EIT is identified by the leading EOF mode of the low-pass filtered equatorial subsurface temperature anomalies and is highly correlated with the decadal ENSO modulation index. This mode is characterized by an east–west dipole structure along the equator. ELT is usually defined by the first EOF mode of subsurface temperature, of which the spatial structure is similar to ENSO. Generally, this mode is insignificantly correlated with the decadal modulation of ENSO. EIT closely interacts with the residuals induced by ENSO asymmetries, both of which show similar spatial structures. On the other hand, ELT is controlled by slowly varying ocean adjustments analogous to a recharge oscillator of ENSO. Both types of TPDV have similar spectral peaks on a decadal-to-interdecadal time scale. Interestingly, the variances of both types of TPDV depend on the strength of connection between El Niño–La Niña residuals and EIT, such that the strong two-way feedback between them enhances EIT and reduces ELT. The strength of the two-way feedback is also related to ENSO variability. The flavors of El Niño–La Niña with respect to changes in the tropical Pacific mean state tend to be well simulated when ENSO variability is larger in CGCMs. As a result, stronger ENSO variability leads to intensified interactive feedback between ENSO residuals and enhanced EIT in CGCMs.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Journal of Climate Vol. 22, No. 24 ( 2009-12-15), p. 6597-6611
    In: Journal of Climate, American Meteorological Society, Vol. 22, No. 24 ( 2009-12-15), p. 6597-6611
    Abstract: The output from a coupled general circulation model (CGCM) is used to develop evidence showing that the tropical Pacific decadal oscillation can be driven by an interaction between the El Niño–Southern Oscillation (ENSO) and the slowly varying mean background climate state. The analysis verifies that the decadal changes in the mean states are attributed largely to decadal changes in ENSO statistics through nonlinear rectification. This is seen because the time evolutions of the first principal component analysis (PCA) mode of the decadal-varying tropical Pacific SST and the thermocline depth anomalies are significantly correlated to the decadal variations of the ENSO amplitude (also skewness). Its spatial pattern resembles the residuals of the SST and thermocline depth anomalies after there is uneven compensation from El Niño and La Niña events. In addition, the stability analysis of a linearized intermediate ocean–atmosphere coupled system, for which the background mean states are specified, provides qualitatively consistent results compared to the CGCM in terms of the relationship between changes in the background mean states and the characteristics of ENSO. It is also shown from the stability analysis as well as the time integration of a nonlinear version of the intermediate coupled model that the mean SST for the high-variability ENSO decades acts to intensify the ENSO variability, while the mean thermocline depth for the same decades acts to suppress the ENSO activity. Thus, there may be an interactive feedback consisting of a positive feedback between the ENSO activity and the mean state of the SST and a negative feedback between the ENSO activity and the mean state of the thermocline depth. This feedback may lead to the tropical decadal oscillation, without the need to invoke any external mechanisms.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2010
    In:  Journal of Climate Vol. 23, No. 5 ( 2010-03-01), p. 1095-1110
    In: Journal of Climate, American Meteorological Society, Vol. 23, No. 5 ( 2010-03-01), p. 1095-1110
    Abstract: The influence of the tropical Pacific annual-mean state on the annual-cycle amplitude and El Niño–Southern Oscillation (ENSO) variability is studied using the Max Planck Institute for Meteorology coupled general circulation model (CGCM) ECHAM5/Max Planck Institute Ocean Model (MPI-OM1). In a greenhouse warming experiment, an intensified annual cycle of sea surface temperature (SST) in the eastern tropical Pacific is associated with reduced ENSO variability, and vice versa. Analysis showed that the annual-mean states, especially the surface warming in the western Pacific and the thermocline deepening in the central Pacific, which is concurrent with the strong annual cycle, act to suppress ENSO amplitude and to intensify the annual-cycle amplitude, and vice versa. The western Pacific warming acts to reduce air–sea coupling strength and to shorten the ocean adjustment time scale, and the deepening of central Pacific thermocline acts to diminish vertical advection of the anomalous ocean temperature by the annual-mean upwelling. Consequently, ENSO activity is suppressed by the annual-mean states during the strong annual-cycle decades, and the opposite case associated with the weak annual-cycle decades is also true. Furthermore, the time integration of an intermediate ENSO model forced with different background state configurations, and a stability analysis of its linearized version, show that annual-mean background states during the weak (strong) annual-cycle decades are characterized by an enhanced (reduced) linear growth rate of ENSO or similarly large (small) variability of ENSO. However, the annual-cycle component of the background state changes cannot significantly modify ENSO variability. Using a hybrid coupled model, it is demonstrated that diagnosed annual-mean background states corresponding to a reduced (enhanced) annual cycle suppress (enhance) the development of the annual cycle of SST in the eastern equatorial Pacific, mainly through the weakening (intensifying) of zonal temperature advection of annual-mean SST by the annual-cycle zonal current. The above results support the idea that climate background state changes control both ENSO and the annual-cycle amplitude in opposing ways.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2010
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...