GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer Science and Business Media LLC  (3)
  • Choe, Chi-un  (3)
Material
Publisher
  • Springer Science and Business Media LLC  (3)
Language
Years
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Journal of Neural Transmission Vol. 130, No. 6 ( 2023-06), p. 755-762
    In: Journal of Neural Transmission, Springer Science and Business Media LLC, Vol. 130, No. 6 ( 2023-06), p. 755-762
    Abstract: Blood neurofilament light chain (NfL) is an easily accessible, highly sensitive and reliable biomarker for neuroaxonal damage. Currently, its role in Parkinson’s disease (PD) remains unclear. Here, we demonstrate that blood NfL can distinguish idiopathic PD from atypical parkinsonian syndromes (APS) with high sensitivity and specificity. In cross-sectional studies, some found significant correlations between blood NfL with motor and cognitive function, whereas others did not. In contrast, prospective studies reported very consistent associations between baseline blood NfL with motor progression and cognitive worsening. Amongst PD subtypes, especially postural instability and gait disorder (PIGD) subtype, symptoms and scores are reliably linked with blood NfL. Different non-motor PD comorbidities have also been associated with high blood NfL levels suggesting that the neuroaxonal damage of the autonomic nervous system as well as serotonergic, cholinergic and noradrenergic neurons is quantifiable. Numerous absolute NfL cutoff levels have been suggested in different cohort studies; however, validation across cohorts remains weak. However, age-adjusted percentiles and intra-individual blood NfL changes might represent more valid and consistent parameters compared with absolute NfL concentrations. In summary, blood NfL has the potential as biomarker in PD patients to be used in clinical practice for prediction of disease severity and especially progression.
    Type of Medium: Online Resource
    ISSN: 0300-9564 , 1435-1463
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 1481655-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2022-05-04)
    Abstract: The aim of this study was to assess the effects of novel stimulation algorithms of deep brain stimulation (short pulse and directional stimulation) in the ventrointermediate thalamus and posterior subthalamic area (VIM/PSA-DBS) on tremor in Parkinson’s disease (PD) and to compare the effects with those in essential tremor (ET). We recruited six PD patients (70.8 ± 10.4 years) and seven ET patients (64.4 ± 9.9 years) with implanted VIM/PSA-DBS in a stable treatment condition ( 〉  3 months postoperatively). Tremor severity and ataxia were assessed in four different stimulation conditions in a randomized order: DBS switched off (STIM OFF), omnidirectional stimulation with 60 µs (oDBS60), omnidirectional stimulation with 30 µs (oDBS30), directional stimulation at the best segment with 60 µs (dDBS60). In both patient groups, all three DBS stimulation modes reduced the total tremor score compared to STIM OFF, whereas stimulation-induced ataxia was reduced by oDBS30 and partially by dDBS60 compared to oDBS60. Tremor reduction was more pronounced in PD than in ET due to a limited DBS effect on intention and action-specific drawing tremor in ET. In PD and ET tremor, short pulse or directional VIM/PSA-DBS is an effective and well tolerated therapeutic option. Trial registration: The study was registered in the DRKS (ID DRKS00025329, 18.05.2021, German Clinical Trials Register, DRKS—Deutsches Register Klinischer Studien).
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Neural Transmission, Springer Science and Business Media LLC, Vol. 129, No. 3 ( 2022-03), p. 295-300
    Abstract: The PIGD (postural instability / gait difficulty) subtype of Parkinson´s disease (PD) is associated with faster cognitive and motor decline. So far, there are no quantifiable biomarkers to aid clinical subtyping. Neurofilament light chain (NfL) is a highly specific marker of neuro-axonal damage and can be assessed in blood. Here, we investigated if serum NfL concentrations are associated with PIGD subtype and PIGD scores in PD patients at advanced disease stages. Furthermore, we evaluated if serum NfL is associated with motor and cognitive function assessed with MDS-UPDRS part III and Montreal cognitive assessment (MoCA). Serum NfL levels were analyzed with Single Molecule Assays (Simoa) in blood of 223 PD patients from the bioMARKers in Parkinson’s Disease (MARK-PD) study. Serum NfL concentrations were higher in PIGD patients independent of age, sex and disease duration. In linear regression analysis, serum NfL levels were associated with MoCA, MDS-UPDRS III and PIGD scores in unadjusted models, but remained significant after adjustment only with PIGD scores. In conclusion, increased serum NfL levels were associated with PIGD subtype and PIGD scores in patients with advanced PD.
    Type of Medium: Online Resource
    ISSN: 0300-9564 , 1435-1463
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 1481655-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...