GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (5)
  • Chin, Wei-Chun  (5)
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2015
    In:  Entropy Vol. 17, No. 3 ( 2015-03-23), p. 1466-1476
    In: Entropy, MDPI AG, Vol. 17, No. 3 ( 2015-03-23), p. 1466-1476
    Type of Medium: Online Resource
    ISSN: 1099-4300
    Language: English
    Publisher: MDPI AG
    Publication Date: 2015
    detail.hit.zdb_id: 2014734-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Gels, MDPI AG, Vol. 7, No. 3 ( 2021-07-06), p. 83-
    Abstract: Microgels play critical roles in a variety of processes in the ocean, including element cycling, particle interactions, microbial ecology, food web dynamics, air–sea exchange, and pollutant distribution and transport. Exopolymeric substances (EPS) from various marine microbes are one of the major sources for marine microgels. Due to their amphiphilic nature, many types of pollutants, especially hydrophobic ones, have been found to preferentially associate with marine microgels. The interactions between pollutants and microgels can significantly impact the transport, sedimentation, distribution, and the ultimate fate of these pollutants in the ocean. This review on marine gels focuses on the discussion of the interactions between gel-forming EPS and pollutants, such as oil and other hydrophobic pollutants, nanoparticles, and metal ions.
    Type of Medium: Online Resource
    ISSN: 2310-2861
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2813982-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Gels, MDPI AG, Vol. 7, No. 3 ( 2021-08-09), p. 114-
    Abstract: Marine gels (nano-, micro-, macro-) and marine snow play important roles in regulating global and basin-scale ocean biogeochemical cycling. Exopolymeric substances (EPS) including transparent exopolymer particles (TEP) that form from nano-gel precursors are abundant materials in the ocean, accounting for an estimated 700 Gt of carbon in seawater. This supports local microbial communities that play a critical role in the cycling of carbon and other macro- and micro-elements in the ocean. Recent studies have furthered our understanding of the formation and properties of these materials, but the relationship between the microbial polymers released into the ocean and marine snow remains unclear. Recent studies suggest developing a (relatively) simple model that is tractable and related to the available data will enable us to step forward into new research by following marine snow formation under different conditions. In this review, we synthesize the chemical and physical processes. We emphasize where these connections may lead to a predictive, mechanistic understanding of the role of gels in marine snow formation and the biogeochemical functioning of the ocean.
    Type of Medium: Online Resource
    ISSN: 2310-2861
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2813982-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Polymers Vol. 14, No. 22 ( 2022-11-11), p. 4870-
    In: Polymers, MDPI AG, Vol. 14, No. 22 ( 2022-11-11), p. 4870-
    Abstract: Wastewater treatment plant effluent is considered an important hotspot of dissolved organic matter. The behavior and transformation of dissolved effluent organic matter (dEfOM) regulate particle sedimentation, pollutant fate, microbial attachment, and biofilm formation. However, studies have so far focused on the transformation of marine and riverine organic matter, and the current knowledge of dEfOM behavior is still limited. Fluctuations in water conditions, especially temperature, may directly alter the size, assembly speed, and structure of microgels, thereby potentially disturbing fate and the transportation of organic matter. In this study, we firstly investigated the effects of temperature on the behavior and capacity of dEfOM assembly into microgels and the possible mechanism. The microgel size and granularity of dEfOM were monitored by flow cytometry. Our results suggest that, with regard to microgels, a higher temperature leads to a higher assembly capacity but also a decrease in the size distribution. By contrast, assembly at 4 °C reduces the relative assembly capacity but increases the microgel size and granularity. The size distribution of the formed microgels at the various temperatures was ordered as follows: 4 °C 〉 20 °C 〉 35 °C. The size reduction in dEfOM assembly may be closely tied to the enhancement of hydrophobic interactions. The reduction in microgel granularity in warm conditions (35 °C) in terms of the effluent water may be caused by thermally induced condensation. Overall, the findings demonstrate the effects of temperature on dEfOM assembly and can facilitate further relevant studies on aquatic organic particle formation during current global warming scenarios.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Polymers Vol. 15, No. 15 ( 2023-07-29), p. 3241-
    In: Polymers, MDPI AG, Vol. 15, No. 15 ( 2023-07-29), p. 3241-
    Abstract: Mucus, composed significantly of glycosylated mucins, is a soft and rheologically complex material that lines respiratory, reproductive, and gastrointestinal tracts in mammals. Mucus may present as a gel, as a highly viscous fluid, or as a viscoelastic fluid. Mucus acts as a barrier to the transport of harmful microbes and inhaled atmospheric pollutants to underlying cellular tissue. Studies on mucin gels have provided critical insights into the chemistry of the gels, their swelling kinetics, and the diffusion and permeability of molecular constituents such as water. The transport and dispersion of micron and sub-micron particles in mucin gels and solutions, however, differs from the motion of small molecules since the much larger tracers may interact with microstructure of the mucin network. Here, using brightfield and fluorescence microscopy, high-speed particle tracking, and passive microrheology, we study the thermally driven stochastic movement of 0.5–5.0 μm tracer particles in 10% mucin solutions at neutral pH, and in 10% mucin mixed with industrially relevant dust; specifically, unmodified limestone rock dust, modified limestone, and crystalline silica. Particle trajectories are used to calculate mean square displacements and the displacement probability distributions; these are then used to assess tracer diffusion and transport. Complex moduli are concomitantly extracted using established microrheology techniques. We find that under the conditions analyzed, the reconstituted mucin behaves as a weak viscoelastic fluid rather than as a viscoelastic gel. For small- to moderately sized tracers with a diameter of lessthan 2 μm, we find that effective diffusion coefficients follow the classical Stokes–Einstein relationship. Tracer diffusivity in dust-laden mucin is surprisingly larger than in bare mucin. Probability distributions of mean squared displacements suggest that heterogeneity, transient trapping, and electrostatic interactions impact dispersion and overall transport, especially for larger tracers. Our results motivate further exploration of physiochemical and rheological mechanisms mediating particle transport in mucin solutions and gels.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...