GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2)
  • Chin, Wei-Chun  (2)
  • Kamalanathan, Manoj  (2)
Material
Publisher
  • MDPI AG  (2)
Person/Organisation
Language
Years
  • 1
    In: Gels, MDPI AG, Vol. 7, No. 3 ( 2021-07-06), p. 83-
    Abstract: Microgels play critical roles in a variety of processes in the ocean, including element cycling, particle interactions, microbial ecology, food web dynamics, air–sea exchange, and pollutant distribution and transport. Exopolymeric substances (EPS) from various marine microbes are one of the major sources for marine microgels. Due to their amphiphilic nature, many types of pollutants, especially hydrophobic ones, have been found to preferentially associate with marine microgels. The interactions between pollutants and microgels can significantly impact the transport, sedimentation, distribution, and the ultimate fate of these pollutants in the ocean. This review on marine gels focuses on the discussion of the interactions between gel-forming EPS and pollutants, such as oil and other hydrophobic pollutants, nanoparticles, and metal ions.
    Type of Medium: Online Resource
    ISSN: 2310-2861
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2813982-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Gels, MDPI AG, Vol. 7, No. 3 ( 2021-08-09), p. 114-
    Abstract: Marine gels (nano-, micro-, macro-) and marine snow play important roles in regulating global and basin-scale ocean biogeochemical cycling. Exopolymeric substances (EPS) including transparent exopolymer particles (TEP) that form from nano-gel precursors are abundant materials in the ocean, accounting for an estimated 700 Gt of carbon in seawater. This supports local microbial communities that play a critical role in the cycling of carbon and other macro- and micro-elements in the ocean. Recent studies have furthered our understanding of the formation and properties of these materials, but the relationship between the microbial polymers released into the ocean and marine snow remains unclear. Recent studies suggest developing a (relatively) simple model that is tractable and related to the available data will enable us to step forward into new research by following marine snow formation under different conditions. In this review, we synthesize the chemical and physical processes. We emphasize where these connections may lead to a predictive, mechanistic understanding of the role of gels in marine snow formation and the biogeochemical functioning of the ocean.
    Type of Medium: Online Resource
    ISSN: 2310-2861
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2813982-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...