GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 45, No. 8 ( 2013-8), p. 860-867
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2013
    detail.hit.zdb_id: 1494946-5
    detail.hit.zdb_id: 1108734-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 782-782
    Abstract: Abstract 782 Recent genetic studies have revealed a number of novel gene mutations in myeloid malignancies, unmasking an unexpected role of deregulated histone modification and DNA methylation in both acute and chronic myeloid neoplasms. However, our knowledge about the spectrum of gene mutations in myeloid neoplasms is still incomplete. In the previous study, we analyzed 29 paired tumor-normal samples with chronic myeloid neoplasms with myelodysplastic features using whole exome sequencing (Yoshida et al., Nature 2011). Although the major discovery was frequent spliceosome mutations tightly associated with myelodysplasia phenotypes, hundreds of unreported gene mutations were also identified, among which we identified recurrent mutations involving STAG2, a core cohesin component, and also two other cohesin components, including STAG1 and PDS5B. Cohesin is a multimeric protein complex conserved across species and is composed of four core subunits, i.e., SMC1, SMC3, RAD21 and STAG proteins, together with several regulatory proteins. Forming a ring-like structure, cohesin is engaged in cohesion of sister chromatids in mitosis, post-replicative DNA repair and regulation of gene expression. To investigate a possible role of cohesin mutations in myeloid leukemogenesis, an additional 534 primary specimens of various myeloid neoplasms was examined for mutations in a total of 9 components of the cohesin and related complexes, using high-throughput sequencing. Copy number alterations in cohesin loci were also interrogated by SNP arrays. In total, 58 mutations and 19 deletions were confirmed by Sanger sequencing in 73 out of 563 primary myeloid neoplasms (13%). Mutations/deletions were found in a variety of myeloid neoplasms, including AML (22/131), CMML (15/86), MDS (26/205) and CML (8/65), with much lower mutation frequencies in MPN (2/76), largely in a mutually exclusive manner. In MDS, mutations were more frequent in RCMD and RAEB (19.5%) but rare in RA, RARS, RCMD-RS and 5q- syndrome (3.4%). Cohesin mutations were significantly associated with poor prognosis in CMML, but not in MDS cases. Cohesin mutations frequently coexisted with other common mutations in myeloid neoplasms, significantly associated with spliceosome mutations. Deep sequencing of these mutant alleles was performed in 19 cases with cohesin mutations. Majority of the cohesin mutations (16/19) existed in the major tumor populations, indicating their early origin during leukemogenesis. Next, we investigated a possible impact of mutations on cohesin functions, where 17 myeloid leukemia cell lines with or without cohesin mutations were examined for expression of each cohesin component and their chromatin-bound fractions. Interestingly, the chromatin-bound fraction of one or more components of cohesin was substantially reduced in cell lines having mutated or defective cohesin components, suggesting substantial loss of cohesin-bound sites on chromatin. Finally, we examined the effect of forced expression of wild-type cohesin on cell proliferation of cohesin-defective cells. Introduction of the wild-type RAD21 and STAG2 suppressed the cell growth of RAD21- (Kasumi-1 and MOLM13) and STAG2-defective (MOLM13) cell lines, respectively, supporting a leukemogenic role of compromised cohesin functions. Less frequent mutations of cohesin components have been described in other cancers, where impaired cohesion and consequent aneuploidy were implicated in oncogenic action. However, 23 cohesin-mutated cases of our cohort had completely normal karyotypes, suggesting that cohesin-mutated cells were not clonally selected because of aneuploidy. Alternatively, a growing body of evidence suggests that cohesin regulate gene expression, arguing for the possibility that cohesin mutations might participate in leukemogenesis through deregulated gene expression. Of additional note, the number of non-silent mutations determined by our whole exome analysis was significantly higher in 6 cohesin-mutated cases compared to non-mutated cases. Since cohesin also participates in post-replicative DNA repair, this may suggest that compromised cohesin function could induce DNA hypermutability and contribute to leukemogenesis. In conclusion, we report a new class of common genetic targets in myeloid malignancies, the cohesin complex. Our findings highlight a possible role of compromised cohesin functions in myeloid leukemogenesis. Disclosures: Haferlach: MLL Munich Leukemia Laboratory: Equity Ownership. Alpermann:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: npj Precision Oncology, Springer Science and Business Media LLC, Vol. 4, No. 1 ( 2020-07-07)
    Abstract: Although hepatoblastoma is the most common pediatric liver cancer, its genetic heterogeneity and therapeutic targets are not well elucidated. Therefore, we conducted a multiomics analysis, including mutatome, DNA methylome, and transcriptome analyses, of 59 hepatoblastoma samples. Based on DNA methylation patterns, hepatoblastoma was classified into three clusters exhibiting remarkable correlation with clinical, histological, and genetic features. Cluster F was largely composed of cases with fetal histology and good outcomes, whereas clusters E1 and E2 corresponded primarily to embryonal/combined histology and poor outcomes. E1 and E2, albeit distinguishable by different patient age distributions, were genetically characterized by hypermethylation of the HNF4A/CEBPA-binding regions, fetal liver-like expression patterns, upregulation of the cell cycle pathway, and overexpression of NQO1 and ODC1 . Inhibition of NQO1 and ODC1 in hepatoblastoma cells induced chemosensitization and growth suppression, respectively. Our results provide a comprehensive description of the molecular basis of hepatoblastoma and rational therapeutic strategies for high-risk cases.
    Type of Medium: Online Resource
    ISSN: 2397-768X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2891458-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 45, No. 10 ( 2013-10), p. 1232-1237
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2013
    detail.hit.zdb_id: 1494946-5
    detail.hit.zdb_id: 1108734-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 49, No. 8 ( 2017-8), p. 1274-1281
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 1494946-5
    detail.hit.zdb_id: 1108734-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 4 ( 2018-02-15), p. 865-876
    Abstract: Pancreatoblastoma is a rare pediatric pancreatic malignancy for which the molecular pathogenesis is not understood. In this study, we report the findings of an integrated multiomics study of whole-exome and RNA sequencing as well as genome-wide copy number and methylation analyses of ten pancreatoblastoma cases. The pancreatoblastoma genome was characterized by a high frequency of aberrant activation of the Wnt signaling pathway, either via somatic mutations of CTNNB1 (90%) and copy-neutral loss of heterozygosity (CN-LOH) of APC (10%). In addition, imprinting dysregulation of IGF2 as a consequence of CN-LOH (80%), gain of paternal allele (10%), and gain of methylation (10%) was universally detected. At the transcriptome level, pancreatoblastoma exhibited an expression profile characteristic of early pancreas progenitor-like cells along with upregulation of the R-spondin/LGR5/RNF43 module. Our results offer a comprehensive description of the molecular basis for pancreatoblastoma and highlight rational therapeutic targets for its treatment. Significance: Molecular genetic analysis of a rare untreatable pediatric tumor reveals Wnt/IGF2 aberrations and features of early pancreas progenitor-like cells, suggesting cellular origins and rational strategies for therapeutic targeting. Cancer Res; 78(4); 865–76. ©2017 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 47, No. 5 ( 2015-5), p. 458-468
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 1494946-5
    detail.hit.zdb_id: 1108734-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 47, No. 11 ( 2015-11), p. 1304-1315
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 1494946-5
    detail.hit.zdb_id: 1108734-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 8_Supplement ( 2013-04-15), p. 4602-4602
    Abstract: Recent genetic studies have revealed a number of novel gene mutations in myeloid malignancies, unmasking an unexpected role of deregulated histone modification and DNA methylation in myeloid neoplasms. However, our knowledge about the spectrum of gene mutations in myeloid neoplasms is still incomplete. So, we analyzed 50 paired tumor-normal samples of myeloid neoplasms using whole exome sequencing, among which we identified recurrent mutations involving STAG2, a core cohesin component, and two other cohesin components, including STAG1 and PDS5B. Cohesin is a multimeric protein complex which is composed of four core subunits (SMC1, SMC3, RAD21 and STAG proteins), and is engaged in cohesion of sister chromatids, DNA repair and transcriptional regulation. To extend the findings in the whole-exome analysis, an additional 534 primary samples of various myeloid neoplasms was examined for mutations and deletions in a total of 9 components of the cohesin complexes, using high-throughput sequencing and SNP arrays. In total, mutations/deletions were found in a variety of myeloid neoplasms, including AML (22/131), CMML (15/86), MDS (26/205), in a mutually exclusive manner. Cohesin mutations frequently coexisted with other common mutations in myeloid neoplasms, significantly associated with spliceosome mutations. Deep sequencing of these mutant alleles revealed that majority of the cohesin mutations existed in the major tumor populations, indicating their early origin during leukemogenesis. Next, we examined several myeloid leukemia cell lines with or without cohesin mutations for expression of each cohesin component and their chromatin-bound fractions. Interestingly, the chromatin-bound fraction of several components of cohesin was significantly reduced in cell lines having mutated or defective cohesin components, suggesting substantial loss of cohesin-bound sites on chromatin. Finally, we introduced the wild-type RAD21 allele into RAD21-mutated cell lines (Kasumi-1), which effectively suppressed the proliferation of Kasumi-1, supporting a leukemogenic role of compromised cohesin functions. Less frequent mutations of cohesin components have been described in other cancers, where impaired cohesion and consequent aneuploidy were implicated in oncogenic action. However, about half of cohesin-mutated cases in our cohort had completely normal karyotypes, suggesting that cohesin-mutated cells were not clonally selected because of aneuploidy. Of note, the number of mutations determined by our whole exome analysis was significantly higher in cohesin-mutated cases compared to non-mutated cases. Since cohesin participates in post-replicative DNA repair, this may suggest that compromised cohesin function could induce DNA hypermutability and contribute to leukemogenesis. In conclusion, our findings highlight a possible role of compromised cohesin functions in myeloid leukemogenesis. Citation Format: Ayana Kon, Lee-Yung Shih, Masashi Minamino, Masashi Sanada, Yuichi Shiraishi, Yasunobu Nagata, Kenichi Yoshida, Yusuke Okuno, Masashige Bando, Shunpei Ishikawa, Aiko Sato-Otsubo, Genta Nagae, Aiko Nishimoto, Claudia Haferlach, Daniel Nowak, Yusuke Sato, Tamara Alpermann, Teppei Shimamura, Hiroko Tanaka, Kenichi Chiba, Ryo Yamamoto, Tomoyuki Yamaguchi, Makoto Otsu, Naoshi Obara, Mamiko Sakata-Yanagimoto, Tsuyoshi Nakamaki, Ken Ishiyama, Florian Nolte, Wolf-Karsten Hofmann, Shuichi Miyawaki, Shigeru Chiba, Hiraku Mori, Hiromitsu Nakauchi, H. Phillip Koeffler, Hiroyuki Aburatani, Torsten Haferlach, Katsuhiko Shirahige, Satoru Miyano, Seishi Ogawa. Recurrent pathway mutations of multiple components of cohesin complex in myeloid neoplasms. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 4602. doi:10.1158/1538-7445.AM2013-4602
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 15_Supplement ( 2015-08-01), p. 3933-3933
    Abstract: Lower grade gliomas (LGGs, WHO grade II/III gliomas) account for approximately one third of all gliomas. Although LGGs are typically slowly progressive, their clinical course is invariably indolent and most patients ultimately succumb to death. In contrast to glioblastoma (GBM), our knowledge about the genetic lesions and clonal evolution in LGG is still incomplete. So, to obtain a complete registry of gene mutations involved in LGG pathogenesis and their role in clonal evolution, we performed whole exome sequencing (WES) and/or targeted sequencing of 335 LGG cases. Clonal evolution in LGG was investigated using paired primary/relapsed tumor specimens from 10 cases as well as multiple tumor specimens (median 5) from 4 cases. Massive parallel sequencing revealed LGGs were clearly grouped into three subgroups with or without IDH1/2 mutation and 1p19q loss of heterozygous (LOH). Type I tumor with IDH1/2 mutation and 1p19q LOH had a most favorable survival and harbored mutations in TERT promoter, CIC, FUBP1 and NOTCH1. Type II tumor with IDH1/2 mutant/1p19q intact subtype represented TP53 bialleleic inactivation and/or ATRX mutations. Type III tumor with IDH1/2 intact showed GBM like mutation profile and poor prognosis. Large scale samples allowed to obviously detect strong positive/negative correlations with each other driver genes. Extensive analysis of variant allele frequencies among co-existing mutations revealed temporal orders of gene mutations in each subtypes. Multi regional/time-points sampling analysis suppoted mutational order and revealed regional and special heterogeneity with tumor evolution in LGGs. LGG contiguously developed and generated heterogeneity through acquiring new mutations in a complex but ordered fashion. In conclusion, our findings delineated the landscape of gene mutations in LGG. LGG had mutually exclusive mutational patterns with hierarchical order in discrete subtypes. IDH1/2 and TERT promoter mutations and 1p19q LOH were thought to exist in the major clone and important role in tumor initiation. In contrast, common occurrence of parallel mutations found in TP53, ATRX, CIC, FUBP1 and NOTCH1 genes indicated central roles of these mutations in LGG development. Citation Format: Hiromichi Suzuki, Kosuke Aoki, Kenichi Chiba, Yusuke Sato, Yusuke Shiozawa, Yuichi Shiraishi, Atsushi Niida, Teppei Shimamura, Masashi Sanada, Satoru Miyano, Toshihiko Wakabayashi, Atsushi Natsume, Seishi Ogawa. The landscape and clonal architecture in lower grade glioma. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 3933. doi:10.1158/1538-7445.AM2015-3933
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...