GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cells, MDPI AG, Vol. 9, No. 1 ( 2020-01-10), p. 182-
    Abstract: The cardiovascular disease (CVD) frequently developed during metabolic syndrome and type-2 diabetes mellitus is associated with increased levels of aggregation-prone small LDL particles. Aggregated LDL (aggLDL) internalization is mediated by low-density lipoprotein receptor-related protein-1 (LRP1) promoting intracellular cholesteryl ester (CE) accumulation. Additionally, LRP1 plays a key function in the regulation of insulin receptor (IR) and glucose transporter type 4 (GLUT4) activities. Nevertheless, the link between LRP1, CE accumulation, and insulin response has not been previously studied in cardiomyocytes. We aimed to identify mechanisms through which aggLDL, by its interaction with LRP1, produce CE accumulation and affects the insulin-induced intracellular signaling and GLUT4 trafficking in HL-1 cells. We demonstrated that LRP1 mediates the endocytosis of aggLDL and promotes CE accumulation in these cells. Moreover, aggLDL reduced the molecular association between IR and LRP1 and impaired insulin-induced intracellular signaling activation. Finally, aggLDL affected GLUT4 translocation to the plasma membrane and the 2-NBDG uptake in insulin-stimulated cells. We conclude that LRP1 is a key regulator of the insulin response, which can be altered by CE accumulation through LRP1-mediated aggLDL endocytosis.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Free Radical Biology and Medicine, Elsevier BV, Vol. 112 ( 2017-11), p. 44-45
    Type of Medium: Online Resource
    ISSN: 0891-5849
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 1483653-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  International Journal of Molecular Sciences Vol. 22, No. 13 ( 2021-06-28), p. 6915-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 22, No. 13 ( 2021-06-28), p. 6915-
    Abstract: Activated alpha-2 Macroglobulin (α2M*) is specifically recognized by the cluster I/II of LRP1 (Low-density lipoprotein Receptor-related Protein-1). LRP1 is a scaffold protein for insulin receptor involved in the insulin-induced glucose transporter type 4 (GLUT4) translocation to plasma membrane and glucose uptake in different types of cells. Moreover, the cluster II of LRP1 plays a critical role in the internalization of atherogenic lipoproteins, such as aggregated Low-density Lipoproteins (aggLDL), promoting intracellular cholesteryl ester (CE) accumulation mainly in arterial intima and myocardium. The aggLDL uptake by LRP1 impairs GLUT4 traffic and the insulin response in cardiomyocytes. However, the link between CE accumulation, insulin action, and cardiac dysfunction are largely unknown. Here, we found that α2M* increased GLUT4 expression on cell surface by Rab4, Rab8A, and Rab10-mediated recycling through PI3K/Akt and MAPK/ERK signaling activation. Moreover, α2M* enhanced the insulin response increasing insulin-induced glucose uptake rate in the myocardium under normal conditions. On the other hand, α2M* blocked the intracellular CE accumulation, improved the insulin response and reduced cardiac damage in HL-1 cardiomyocytes exposed to aggLDL. In conclusion, α2M* by its agonist action on LRP1, counteracts the deleterious effects of aggLDL in cardiomyocytes, which may have therapeutic implications in cardiovascular diseases associated with hypercholesterolemia.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Scientific Reports Vol. 11, No. 1 ( 2021-02-26)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2021-02-26)
    Abstract: Insulin-like Growth Factor-1 (IGF-1) is involved in the normal development and survival of retinal cells. Low-density lipoprotein Receptor-related Protein-1 (LRP1) plays a key role on the regulation of several membrane proteins, such as the IGF-1 receptor (IGF-1R). In brain astrocytes, LRP1 interact with IGF-1R and the glucose transporter type 1 (GLUT1), regulating the glucose uptake in these cells. Although GLUT1 is expressed in retinal Müller Glial Cells (MGCs), its regulation is not clear yet. Here, we investigated whether IGF-1 modulates GLUT1 traffic to plasma membrane (PM) and glucose uptake, as well as the involvement of LRP1 in this process in the human Müller glial-derived cell line (MIO-M1). We found that IGF-1 produced GLUT1 translocation to the PM, in a time-dependent manner involving the intracellular signaling activation of MAPK/ERK and PI 3 K/Akt pathways, and generated a significant glucose uptake. Moreover, we found a molecular association between LRP1 and GLUT1, which was significantly reduced by IGF-1. Finally, cells treated with specific siRNA for LRP1 showed an impaired GLUT1 expression on PM and decreased glucose uptake induced by IGF-1. We conclude that IGF-1 regulates glucose homeostasis in MGCs involving the expression of LRP1.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...