GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Neurosurgery, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 137, No. 6 ( 2022-12-01), p. 1821-1830
    Abstract: Pain is the most common nonmotor symptom of Parkinson’s disease (PD) and is often undertreated. Deep brain stimulation (DBS) effectively mitigates the motor symptoms of this multisystem neurodegenerative disease; however, its therapeutic effect on nonmotor symptoms, especially pain, remains inconclusive. While there is a critical need to help this large PD patient population, guidelines for managing this significant disease burden are absent. Herein, the authors systematically reviewed the literature and conducted a meta-analysis to study the influence of traditional (subthalamic nucleus [STN] and globus pallidus internus [GPi] ) DBS on chronic pain in patients with PD. METHODS The authors performed a systematic review of the literature and a meta-analysis following PRISMA guidelines. Risk of bias was assessed using the levels of evidence established by the Oxford Centre for Evidence-Based Medicine. Inclusion criteria were articles written in English, published in a peer-reviewed scholarly journal, and about studies conducting an intervention for PD-related pain in no fewer than 5 subjects. RESULTS Twenty-six studies were identified and included in this meta-analysis. Significant interstudy heterogeneity was detected (Cochran’s Q test p 〈 0.05), supporting the use of the random-effects model. The random-effects model estimated the effect size of DBS for the treatment of idiopathic pain as 1.31 (95% CI 0.84–1.79). The DBS-on intervention improved pain scores by 40% as compared to the control state (preoperative baseline or DBS off). CONCLUSIONS The results indicated that traditional STN and GPi DBS can have a favorable impact on pain control and improve pain scores by 40% from baseline in PD patients experiencing chronic pain. Further trials are needed to identify the subtype of PD patients whose pain benefits from DBS and to identify the mechanisms by which DBS improves pain in PD patients.
    Type of Medium: Online Resource
    ISSN: 0022-3085 , 1933-0693
    RVK:
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2022
    detail.hit.zdb_id: 2026156-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Translational Psychiatry, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2022-11-21)
    Abstract: Deep brain stimulation (DBS) and non-invasive neuromodulation are currently being investigated for treating network dysfunction in Alzheimer’s Disease (AD). However, due to heterogeneity in techniques and targets, the cognitive outcome and brain network connectivity remain unknown. We performed a systematic review, meta-analysis, and normative functional connectivity to determine the cognitive outcome and brain networks of DBS and non-invasive neuromodulation in AD. PubMed, Embase, and Web of Science were searched using three concepts: dementia, brain connectome, and brain stimulation, with filters for English, human studies, and publication dates 1980–2021. Additional records from clinicaltrials.gov were added. Inclusion criteria were AD study with DBS or non-invasive neuromodulation and a cognitive outcome. Exclusion criteria were less than 3-months follow-up, severe dementia, and focused ultrasound intervention. Bias was assessed using Centre for Evidence-Based Medicine levels of evidence. We performed meta-analysis, with subgroup analysis based on type and age at neuromodulation. To determine the patterns of neuromodulation-induced brain network activation, we performed normative functional connectivity using rsfMRI of 1000 healthy subjects. Six studies, with 242 AD patients, met inclusion criteria. On fixed-effect meta-analysis, non-invasive neuromodulation favored baseline, with effect size −0.40(95% [CI], −0.73, −0.06, p  = 0.02), while that of DBS was 0.11(95% [CI] −0.34, 0.56, p  = 0.63), in favor of DBS. In patients ≥65 years old, DBS improved cognitive outcome, 0.95(95% [CI] 0.31, 1.58, p  = 0.004), whereas in patients 〈 65 years old baseline was favored, −0.17(95% [CI] −0.93, 0.58, p  = 0.65). Functional connectivity regions were in the default mode (DMN), salience (SN), central executive (CEN) networks, and Papez circuit. The subgenual cingulate and anterior limb of internal capsule (ALIC) showed connectivity to all targets of neuromodulation. This meta-analysis provides level II evidence of a difference in response of AD patients to DBS, based on age at intervention. Brain stimulation in AD may modulate DMN, SN, CEN, and Papez circuit, with the subgenual cingulate and ALIC as potential targets.
    Type of Medium: Online Resource
    ISSN: 2158-3188
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2609311-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...