GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 27, No. 5 ( 2021-03-01), p. 1438-1451
    Abstract: TERT gene rearrangement with transcriptional superenhancers leads to TERT overexpression and neuroblastoma. No targeted therapy is available for clinical trials in patients with TERT-rearranged neuroblastoma. Experimental Design: Anticancer agents exerting the best synergistic anticancer effects with BET bromodomain inhibitors were identified by screening an FDA-approved oncology drug library. The synergistic effects of the BET bromodomain inhibitor OTX015 and the proteasome inhibitor carfilzomib were examined by immunoblot and flow cytometry analysis. The anticancer efficacy of OTX015 and carfilzomib combination therapy was investigated in mice xenografted with TERT-rearranged neuroblastoma cell lines or patient-derived xenograft (PDX) tumor cells, and the role of TERT reduction in the anticancer efficacy was examined through rescue experiments in mice. Results: The BET bromodomain protein BRD4 promoted TERT-rearranged neuroblastoma cell proliferation through upregulating TERT expression. Screening of an approved oncology drug library identified the proteasome inhibitor carfilzomib as the agent exerting the best synergistic anticancer effects with BET bromodomain inhibitors including OTX015. OTX015 and carfilzomib synergistically reduced TERT protein expression, induced endoplasmic reticulum stress, and induced TERT-rearranged neuroblastoma cell apoptosis which was blocked by TERT overexpression and endoplasmic reticulum stress antagonists. In mice xenografted with TERT-rearranged neuroblastoma cell lines or PDX tumor cells, OTX015 and carfilzomib synergistically blocked TERT expression, induced tumor cell apoptosis, suppressed tumor progression, and improved mouse survival, which was largely reversed by forced TERT overexpression. Conclusions: OTX015 and carfilzomib combination therapy is likely to be translated into the first clinical trial of a targeted therapy in patients with TERT-rearranged neuroblastoma.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Science Translational Medicine, American Association for the Advancement of Science (AAAS), Vol. 11, No. 477 ( 2019-01-30)
    Abstract: Amplification of the MYCN oncogene is associated with an aggressive phenotype and poor outcome in childhood neuroblastoma. Polyamines are highly regulated essential cations that are frequently elevated in cancer cells, and the rate-limiting enzyme in polyamine synthesis, ornithine decarboxylase 1 (ODC1), is a direct transcriptional target of MYCN. Treatment of neuroblastoma cells with the ODC1 inhibitor difluoromethylornithine (DFMO), although a promising therapeutic strategy, is only partially effective at impeding neuroblastoma cell growth due to activation of compensatory mechanisms resulting in increased polyamine uptake from the surrounding microenvironment. In this study, we identified solute carrier family 3 member 2 (SLC3A2) as the key transporter involved in polyamine uptake in neuroblastoma. Knockdown of SLC3A2 in neuroblastoma cells reduced the uptake of the radiolabeled polyamine spermidine, and DFMO treatment increased SLC3A2 protein. In addition, MYCN directly increased polyamine synthesis and promoted neuroblastoma cell proliferation by regulating SLC3A2 and other regulatory components of the polyamine pathway. Inhibiting polyamine uptake with the small-molecule drug AMXT 1501, in combination with DFMO, prevented or delayed tumor development in neuroblastoma-prone mice and extended survival in rodent models of established tumors. Our findings suggest that combining AMXT 1501 and DFMO with standard chemotherapy might be an effective strategy for treating neuroblastoma.
    Type of Medium: Online Resource
    ISSN: 1946-6234 , 1946-6242
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...