GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (2)
  • Cheng, Qinghua  (2)
  • Du, Xiaoyu  (2)
Material
Publisher
  • Wiley  (2)
Person/Organisation
Language
Years
  • 1
    In: Advanced Materials Technologies, Wiley, Vol. 5, No. 9 ( 2020-09)
    Abstract: As the flexible wearable devices are developing rapidly, the requirement for energy storage devices with high energy and power density, excellent flexibility, and high reliability is increasing. Fiber‐shaped supercapacitors offering high power density and excellent flexibility have attracted widespread attention. However, the low energy density and poor reliability limit the practical application of these fiber‐shaped supercapacitors. To overcome these problems, a new zinc‐ion hybrid fiber supercapacitor (ZHFSC) is designed and realized. As both capacitor‐type and battery‐type energy storage mechanisms can be used, the energy density of ZHFSC is expected to be improved. Furthermore, the excellent self‐healability of poly(vinyl alcohol) (PVA)/Zn(CF 3 SO 3 ) 2 aqueous gel electrolyte contributes to the high reliability of the ZHFSC. As a proof of concept, the maximum power density and energy density of the ZHFSC are, respectively, as high as 1433.2 mW cm −3 and 13.1 mWh cm −3 , and the capacitance retention, respectively, has the high values of 87.8% and 70.5% under the bending degree of 150° and after the fifth self‐healing. This study offers an efficient method to realize the high‐performance supercapacitors for flexible wearable devices in the future.
    Type of Medium: Online Resource
    ISSN: 2365-709X , 2365-709X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2850995-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Advanced Materials Interfaces, Wiley, Vol. 6, No. 22 ( 2019-11)
    Abstract: Micro‐supercapacitors (MSCs) with excellent flexibility and high electrochemical performance are essential for portable and miniaturized electronics. In this paper, a laser etching technology with advantages of simple process, low cost, and high machining accuracy is used to directly etch the free‐standing MXene‐molybdenum disulfide (MoS 2 ) film for MSC. As adding MoS 2 in MXene effectively improves the electrochemical performance, such as a higher specific capacitance (about 60% higher than pure MXene). Eventually, the maximum specific capacitance of this MSC (based on the total volume of positive and negative electrodes) is 173.6 F cm −3 (1 mV s −1 ), and the maximum energy density and maximum power density are 15.5 mWh cm −3 and 0.97 W cm −3 , respectively. In addition, the MSC also shows the excellent cycle stability and flexibility, e.g., after 6000 charge–discharge cycles and bending up to 150°, the capacitances of the MSC still retain about 98% and 89% of its initial capacitance, respectively. The laser‐etched MSC based on MXene‐MoS 2 offers a new idea for future high‐performance micro energy storage devices.
    Type of Medium: Online Resource
    ISSN: 2196-7350 , 2196-7350
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2750376-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...