GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hindawi Limited  (6)
  • Chen, Zhiwei  (6)
Material
Publisher
  • Hindawi Limited  (6)
Language
Years
  • 1
    In: Journal of Oncology, Hindawi Limited, Vol. 2018 ( 2018-12-18), p. 1-18
    Abstract: NM23 expression is closely associated with hepatocellular carcinoma (HCC) recurrence, but the hereditary factors influencing NM23 levels are unknown. Using public database, the diagnostic value of NM23 in HCC was investigated. A total of 424 hepatitis B virus- (HBV-) related HCC patients were enrolled to perform a genome–wide association study for identifying candidate variants associated with NM23 expression level. Additionally, a logistic regression model, haplotypes, and survival analysis were performed in the subsequent analysis. We identified high NM23 expression levels that have a diagnostic accuracy in HCC tissues and had a poor recurrence-free survival in HBV-related HCC patients. Variants near Psoriasis susceptibility 1 candidate 1 ( PSORS1C1 ) and StAR related lipid transdomain containing 3 ( STARD3 ) are associated with NM23 expression. The PSORS1C1 haplotype TGCACA and the STARD3 haplotype GG have favorable cumulative effects on NM23 expression. Further, variants in PSORS1C1 were associated with either overall survival (rs556285588, rs3095301, and rs3131003) only or overall survival and recurrence-free survival (rs560052000 and rs541820233) both in HCC patients. Our findings suggested that variants at the PSORS1C1 and STARD3 loci play an important role in NM23 regulation. Moreover, variants in PSORS1C1 are potential biomarkers for the prediction of postoperative clinical outcomes in HBV-related HCC patients. Thus, variants in PSORS1C1 and STARD3 are associated with NM23 expression and clinical outcomes of HBV-related HCC patients, which may be regarded as potential biomarkers for this disease.
    Type of Medium: Online Resource
    ISSN: 1687-8450 , 1687-8469
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2018
    detail.hit.zdb_id: 2461349-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: BioMed Research International, Hindawi Limited, Vol. 2016 ( 2016), p. 1-8
    Abstract: To establish a high-efficiency system of isolated microspore culture for different barley genotypes, we investigated the effects of nitrogen sources and concentrations on callus induction and plant regeneration in different barley genotypes. The results showed that the organic nitrogen sources greatly increased the callus induction, and the great reduction of total nitrogen sources would significantly decrease the callus induction. And the further optimization experiments revealed that the increasing of organic nitrogen sources was much important in callus induction while it seemed different in plant regeneration. Based on the great effects of organic nitrogen on callus induction, the medium of N6-ANO1/4-2000 might be the best choice for the microspore culture system. In addition, the phylogenetic analysis indicated that there were clear differences of genetic backgrounds among these barley genotypes, and it also suggested that this medium for microspore culture had widespread utilization in different barley genotypes.
    Type of Medium: Online Resource
    ISSN: 2314-6133 , 2314-6141
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2016
    detail.hit.zdb_id: 2698540-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: International Journal of Genomics, Hindawi Limited, Vol. 2018 ( 2018-06-20), p. 1-10
    Abstract: The excess use of nitrogen fertilizers causes many problems, including higher costs of crop production, lower nitrogen use efficiency, and environmental damage. Crop breeding for low-nitrogen tolerance, especially molecular breeding, has become the major route to solving these issues. Therefore, in crops such as barley ( Hordeum vulgare L.), it is crucial to understand the mechanisms of low-nitrogen tolerance at the molecule level. In the present study, two barley cultivars, BI-04 (tolerant to low nitrogen) and BI-45 (sensitive to low nitrogen), were used for gene expression analysis under low-nitrogen stress, including 10 genes related to primary nitrogen metabolism. The results showed that the expressions of HvNIA2 (nitrite reductase), HvGS2 (chloroplastic glutamine synthetase), and HvGLU2 (ferredoxin-dependent glutamate synthase) were only induced in shoots of BI-04 under low-nitrogen stress, HvGLU2 was also only induced in roots of BI-04, and HvGS2 showed a rapid response to low-nitrogen stress in the roots of BI-04. The expression of HvASN1 (asparagine synthetase) was reduced in both cultivars, but it showed a lower reduction in the shoots of BI-04. In addition, gene expression and regulation differences in the shoots and roots were also compared between the barley cultivars. Taken together, the results indicated that the four above-mentioned genes might play important roles in low-nitrogen tolerance in barley.
    Type of Medium: Online Resource
    ISSN: 2314-436X , 2314-4378
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2018
    detail.hit.zdb_id: 2711883-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: International Journal of Genomics, Hindawi Limited, Vol. 2013 ( 2013), p. 1-19
    Abstract: Salinity is one of the major abiotic stresses that affect crop productivity. Identification of the potential novel genes responsible for salt tolerance in barley will contribute to understanding the molecular mechanism of barley responses to salt stress. We compared changes in transcriptome between Hua 11 (a salt-tolerant genotype) and Hua 30 (a salt sensitive genotype) in response to salt stress at the seedling stage using barley cDNA microarrays. In total, 557 and 247 salt-responsive genes were expressed exclusively in the shoot and root tissue of the salt-tolerant genotype, respectively. Among these genes, a number of signal-related genes, transcription factors and compatible solutes were identified and some of these genes were carefully discussed. Notably, a LysM RLK was firstly found involved in salt stress response. Moreover, key enzymes in the pathways of jasmonic acid biosynthesis, lipid metabolism and indole-3-acetic acid homeostasis were specifically affected by salt stress in salt tolerance genotype. These salt-responsive genes and biochemical pathways identified in this study could provide further information for understanding the mechanisms of salt tolerance in barley.
    Type of Medium: Online Resource
    ISSN: 2314-436X , 2314-4378
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2013
    detail.hit.zdb_id: 2711883-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Biomedicine and Biotechnology, Hindawi Limited, Vol. 2011 ( 2011), p. 1-9
    Abstract: The possible bioterrorism threat using the variola virus, the causative agent of smallpox, has promoted us to further investigate the immunogenicity profiles of existing vaccines. Here, we study for the first time the immunogenicity profile of a replication-competent smallpox vaccine (vaccinia Tiantan, VTT strain) for inducing neutralizing antibodies (Nabs) through mucosal vaccination, which is noninvasive and has a critical implication for massive vaccination programs. Four different routes of vaccination were tested in parallel including intramuscular (i.m.), intranasal (i.n.), oral (i.o.), and subcutaneous (s.c.) inoculations in mice. We found that one time vaccination with an optimal dose of VTT was able to induce anti-VTT Nabs via each of the four routes. Higher levels of antiviral Nabs, however, were induced via the i.n. and i.o. inoculations when compared with the i.m. and s.c. routes. Moreover, the i.n. and i.o. vaccinations also induced higher sustained levels of Nabs overtime, which conferred better protections against homologous or alternating mucosal routes of viral challenges six months post vaccination. The VTT-induced immunity via all four routes, however, was partially effective against the intramuscular viral challenge. Our data have implications for understanding the potential application of mucosal smallpox vaccination and for developing VTT-based vaccines to overcome preexisting antivaccinia immunity.
    Type of Medium: Online Resource
    ISSN: 1110-7243 , 1110-7251
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2011
    detail.hit.zdb_id: 2698540-8
    detail.hit.zdb_id: 2512507-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Hindawi Limited ; 2022
    In:  Evidence-Based Complementary and Alternative Medicine Vol. 2022 ( 2022-1-7), p. 1-15
    In: Evidence-Based Complementary and Alternative Medicine, Hindawi Limited, Vol. 2022 ( 2022-1-7), p. 1-15
    Abstract: Background. There is still a lack of effective therapeutic drugs for nonalcoholic fatty liver disease (NAFLD) to date. In this study, we applied mouse model experiments to clarify the effect of Chinese herbal medicine “Lanzhang Granules (LZG)” on NAFLD and further explore the potential mechanism to provide an alternative method for NAFLD treatment. Methods. Male C57BL/6J mice were fed with a high-fat diet (HFD) for twenty-two weeks to induce the NAFLD model. LZG intervention was then performed by gavage daily for another eight weeks. At the end of the treatment, serum and liver tissues were collected. Serum biochemical indexes, insulin levels, and liver histopathology were measured to assess the effect of LZG on NAFLD. The liver tissues were then analyzed by RNA sequence for differentially expressed genes and signaling pathways. Results were further analyzed by Protein-Protein Interaction (PPI) networks between the LZG and model groups. The selected different genes and signaling pathways were further verified by RT-PCR and Western blot analysis. Moreover, alpha mouse liver 12 (AML12) cells with lipid accumulation induced by fatty acid were treated with LZG, Fenofibrate (PPARα agonist), or Gw6471 (PPARα antagonist) to confirm the potential pharmacological mechanism. Results. LZG was found to downregulate liver weight, body weight, liver index, and serum levels of ALT, AST, and serum lipid in HFD-induced NAFLD mice. HE and Oil Red O staining showed the improvement of hepatic steatosis and inflammatory infiltration in the mice with LZG treatment. The homeostasis model assessment-insulin resistance (HOMA-IR) index indicated that LZG improved the insulin resistance of NAFLD mice. The RNA sequencing and PPI analysis confirmed the role of LZG in lipid metabolism regulation and identified the peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway as one of the major underlying mechanisms. Western blot and RT-PCR results verified the regulatory effect of LZG on the PPARα pathway, including the upregulation of PPARα, acyl-coenzyme A oxidase 1 (ACOX1), and enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase (EHHADH) and the downregulation of TNFα. In vitro experiments showed the effect of LZG in improving lipid accumulation and cell viability in AML12 cells induced by fatty acids, which were alleviated by Gw6471 coincubation. Gw6471could also reverse the transcription of PPAR target genes ACOX1 and EHHADH, which were upregulated by LZG treatment. Conclusion. LZG can improve NAFLD in mice or cell models. A major underlying mechanism may be the regulation of the PPARα signaling pathway to improve lipid metabolism and inhibit the inflammatory response. This study will help to promote the clinical application of LZG for the treatment of NAFLD.
    Type of Medium: Online Resource
    ISSN: 1741-4288 , 1741-427X
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2148302-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...