GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chen, Yong Q.  (2)
  • 2010-2014  (2)
  • Biology  (2)
Material
Language
Years
  • 2010-2014  (2)
Year
Subjects(RVK)
  • Biology  (2)
RVK
  • 1
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 79, No. 10 ( 2013-05-15), p. 3225-3233
    Abstract: Mortierella alpina is a filamentous fungus commonly found in soil that is able to produce lipids in the form of triacylglycerols that account for up to 50% of its dry weight. Analysis of the M. alpina genome suggests that there is a phenylalanine-hydroxylating system for the catabolism of phenylalanine, which has never been found in fungi before. We characterized the phenylalanine-hydroxylating system in M. alpina to explore its role in phenylalanine metabolism and its relationship to lipid biosynthesis. Significant changes were found in the profile of fatty acids in M. alpina grown on medium containing an inhibitor of the phenylalanine-hydroxylating system compared to M. alpina grown on medium without inhibitor. Genes encoding enzymes involved in the phenylalanine-hydroxylating system (phenylalanine hydroxylase [PAH], pterin-4α-carbinolamine dehydratase, and dihydropteridine reductase) were expressed heterologo usly in Escherichia coli , and the resulting proteins were purified to homogeneity. Their enzymatic activity was investigated by high-performance liquid chromatography (HPLC) or visible (Vis)-UV spectroscopy. Two functional PAH enzymes were observed, encoded by distinct gene copies. A novel role for tetrahydrobiopterin in fungi as a cofactor for PAH, which is similar to its function in higher life forms, is suggested. This study establishes a novel scheme for the fungal degradation of an aromatic substance (phenylalanine) and suggests that the phenylalanine-hydroxylating system is functionally significant in lipid metabolism.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2013
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 80, No. 13 ( 2014-07), p. 4063-4071
    Abstract: Our previous study confirmed the ability of Lactobacillus plantarum CCFM8610 to protect against acute cadmium (Cd) toxicity in mice. This study was designed to evaluate the protective effects of CCFM8610 against chronic Cd toxicity in mice and to gain insights into the protection mode of this strain. Experimental mice were divided into two groups and exposed to Cd for 8 weeks via drinking water or intraperitoneal injection. Both groups were further divided into four subgroups, control, Cd only, CCFM8610 only, and Cd plus CCFM8610. Levels of Cd were measured in the feces, liver, and kidneys, and alterations of several biomarkers of Cd toxicity were noted. The results showed that when Cd was introduced orally, cotreatment with Cd and CCFM8610 effectively decreased intestinal Cd absorption, reduced Cd accumulation in tissue, alleviated tissue oxidative stress, reversed hepatic and renal damage, and ameliorated the corresponding histopathological changes. When Cd was introduced intraperitoneally, administration of CCFM8610 did not have an impact on tissue Cd accumulation or reverse the activities of antioxidant enzymes. However, CCFM8610 still offered protection against oxidative stress and reversed the alterations of Cd toxicity biomarkers and tissue histopathology. These results suggest that CCFM8610 is effective against chronic cadmium toxicity in mice. Besides intestinal Cd sequestration, CCFM8610 treatment offers direct protection against Cd-induced oxidative stress. We also provide evidence that the latter is unlikely to be mediated via protection against Cd-induced alteration of antioxidant enzyme activities.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2014
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...