GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chen, Ying  (6)
  • Hu, Peisong  (6)
  • 1
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 15, No. 1 ( 2024-02-07)
    Abstract: Preharvest sprouting (PHS) is a deleterious phenotype that occurs frequently in rice-growing regions where the temperature and precipitation are high. It negatively affects yield, quality, and downstream grain processing. Seed dormancy is a trait related to PHS. Longer seed dormancy is preferred for rice production as it can prevent PHS. Here, we map QTLs associated with rice seed dormancy and clone Seed Dormancy 3.1 ( SDR3.1 ) underlying one major QTL. SDR3.1 encodes a mediator of OsbZIP46 deactivation and degradation (MODD). We show that SDR3.1 negatively regulates seed dormancy by inhibiting the transcriptional activity of ABIs . In addition, we reveal two critical amino acids of SDR3.1 that are critical for the differences in seed dormancy between the Xian/indica and Geng/japonica cultivars. Further, SDR3.1 has been artificially selected during rice domestication. We propose a two-line model for the process of rice seed dormancy domestication from wild rice to modern cultivars. We believe the candidate gene and germplasm studied in this study would be beneficial for the genetic improvement of rice seed dormancy.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2024
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Agronomy, MDPI AG, Vol. 13, No. 2 ( 2023-02-18), p. 589-
    Abstract: Rice is a major food crop across the globe, but the frequent occurrence of rice blast in recent years has seriously affected the yield of rice. In addition, fragrance rice is becoming increasingly popular among consumers. In this study, the fragrant rice variety Wenxiang-1 was used as the donor of the fragrance gene badh2, and the rice variety R1179 was used as the donor of rice blast resistance gene Pi2. Plants that were homozygous for both Pi2 and badh2 were selected using marker-assisted selection (MAS) applied to the Wenxiang-1/R1179 F2 segregation population with the functional markers Pi2-1 and Badh2-1 as well as whole-genome-SNP-genotyping technology. Finally, “elite” rice varieties R365 and R403 that had both high levels of rice blast resistance (level 3 and 4) and fragrance (0.650 and 0.511 mg/kg) were bred. Genetic composition analysis indicated that 40.67% of the whole genome of R365 was inherited from Wenxiang-1, while 59.33% was inherited from R1179. Similarly, 46.26% of the whole genome of R403 was inherited from Wenxiang-1, while 53.74% was inherited from R1179. These new hybrid lines with R365 and R403 as the male parents also exhibit high yield per hectare, especially C815S/R365 and Yu03S/R403 F1, with yields per hectare of 9.93 ± 0.15 and 9.6 ± 0.17 tons. These plants also possess high levels of rice blast resistance (level 3 and 4) and fragrance (0.563 and 0.618 mg/kg).
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Agriculture, MDPI AG, Vol. 13, No. 3 ( 2023-03-16), p. 693-
    Abstract: The use of male sterile lines (MSLs) of rice is essential for heterosis utilization. However, MSLs have a common defect in the elongation of the uppermost internode, eventually leading to incomplete panicle exsertion, blocking pollination, and reducing the hybrid rice seed yield. Previously, the elongated uppermost internode 1 (EUI1) was identified as an active gibberellin-deactivating enzyme that plays a key role in panicle exsertion from the flag leaf sheath in rice (Oryza sativa L.). We used an adenine base editor to edit EUI1 and obtained two types of homozygous transgenic plants (eui1-1 and eui1-2). The transcription and translation levels of EUI1 in the two mutants were significantly lower than in the wild type, as was the oxidation activity of EUI1 to active gibberellins (GAs), which also decreased. The contents of the plant hormones GA1, GA3, and GA4 in eui1-1 (1.64, 1.55, and 0.92 ng/g) and eui1-2 (0.85, 0.64, and 0.65 ng/g) panicles were significantly higher than the wild type (0.70, 0.57, and 0.42 ng/g). The uppermost internode lengths of the mutant were 26.5 and 23.6 cm, which were significantly longer than that of the wild type (18.0 cm), and the cell lengths of the mutant were 161.10 and 157.19 μm, which were longer than that of the wild type (89.28 μm). Our results indicate that the adenine base editing system could increase the content of endogenous bioactive GAs in young panicles by fine-tuning EUI1 activity, reduce the defect of panicle enclosure in MSLs and increase the yield of hybrid rice seed production.
    Type of Medium: Online Resource
    ISSN: 2077-0472
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2651678-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: BMC Plant Biology, Springer Science and Business Media LLC, Vol. 24, No. 1 ( 2024-03-18)
    Abstract: Chalkiness is a common phenotype induced by various reasons, such as abiotic stress or the imbalance of starch synthesis and metabolism during the development period. However, the reason mainly for one gene losing its function such as NAC (TFs has a large family in rice) which may cause premature is rarely known to us. Results The Ko- Osnac02 mutant demonstrated an obviously early maturation stage compared to the wild type (WT) with 15 days earlier. The result showed that the mature endosperm of Ko- Osnac02 mutant exhibited chalkiness, characterized by white-core and white-belly in mature endosperm. As grain filling rate is a crucial factor in determining the yield and quality of rice ( Oryza sativa , ssp. japonica ), it's significant that mutant has a lower amylose content (AC) and higher soluble sugar content in the mature endosperm. Interestingly among the top DEGs in the RNA sequencing of N2 (3DAP) and WT seeds revealed that the OsBAM2 (LOC_Os10g32810) expressed significantly high in N2 mutant, which involved in Maltose up-regulated by the starch degradation. As Prediction of Protein interaction showed in the chalky endosperm formation in N2 seeds (3 DAP), seven genes were expressed at a lower-level which should be verified by a heatmap diagrams based on DEGs of N2 versus WT. The Tubulin genes controlling cell cycle are downregulated together with the MCM family genes MCM4 ( ↓), MCM7 ( ↑), which may cause white-core in the early endosperm development. In conclusion, the developing period drastically decreased in the Ko- Osnac02 mutants, which might cause the chalkiness in seeds during the early endosperm development. Conclusions The gene OsNAC02 which controls a great genetic co-network for cell cycle regulation in early development, and KO- Osnac02 mutant shows prematurity and white-core in endosperm .
    Type of Medium: Online Resource
    ISSN: 1471-2229
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2024
    detail.hit.zdb_id: 2059868-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Plant Science Vol. 14 ( 2023-7-24)
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 14 ( 2023-7-24)
    Abstract: 3-Ketoacyl-CoA synthase (KCS) is the key rate-limiting enzyme for the synthesis of very long-chain fatty acids (VLCFAs) in plants, which determines the carbon chain length of VLCFAs. However, a comprehensive study of KCSs in Oryza sativa has not been reported yet. In this study, we identified 22 OsKCS genes in rice, which are unevenly distributed on nine chromosomes. The OsKCS gene family is divided into six subclasses. Many cis -acting elements related to plant growth, light, hormone, and stress response were enriched in the promoters of OsKCS genes. Gene duplication played a crucial role in the expansion of the OsKCS gene family and underwent a strong purifying selection. Quantitative Real-time polymerase chain reaction (qRT-PCR) results revealed that most KCS genes are constitutively expressed. We also revealed that KCS genes responded differently to exogenous cadmium stress in japonica and indica background, and the KCS genes with higher expression in leaves and seeds may have functions under cadmium stress. This study provides a basis for further understanding the functions of KCS genes and the biosynthesis of VLCFA in rice.
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Plants, MDPI AG, Vol. 11, No. 22 ( 2022-11-16), p. 3138-
    Abstract: Zinc (Zn) is an essential micronutrient for rice, but it is toxic at a high concentration, especially in acid soils. It is yet unknown which genes regulate Zn tolerance in rice. In the present study, a genome-wide association study (GWAS) was performed for Zn tolerance in rice at the seedling stage within a rice core collection, named Ting’s core collection, which showed extensive phenotypic variations in Zn toxicity with high-density single-nucleotide polymorphisms (SNPs). A total of 7 and 19 quantitative trait loci (QTL) were detected using root elongation (RE) and relative root elongation (RRE) under high Zn toxicity, respectively. Among them, 24 QTL were novel, and qRRE15 was located in the same region where 3 QTL were reported previously. In addition, qRE4 and qRRE9 were identical. Furthermore, we found eight candidate genes that are involved in abiotic and biotic stress, immunity, cell expansion, and phosphate transport in the loci of qRRE8, qRRE9, and qRRE15. Moreover, four candidate genes, i.e., Os01g0200700, Os06g0621900, Os06g0493600, and Os06g0622700, were verified correlating to Zn tolerance in rice by quantitative real time-PCR (qRT-PCR). Taken together, these results provide significant insight into the genetic basis for Zn toxicity tolerance and tolerant germplasm for developing rice tolerance to Zn toxicity and improving rice production in Zn-contaminated soils.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704341-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...