GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chen, Xiaojiong  (3)
  • Dai, Tianxiang  (3)
  • Pramanik, Tanumoy  (3)
Material
Person/Organisation
Language
Years
  • 1
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2022-09-30)
    Abstract: Characterization and categorization of quantum correlations are both fundamentally and practically important in quantum information science. Although quantum correlations such as non-separability, steerability, and non-locality can be characterized by different theoretical models in different scenarios with either known (trusted) or unknown (untrusted) knowledge of the associated systems, such characterization sometimes lacks unambiguous to experimentalist. In this work, we propose the physical interpretation of nonlocal quantum correlation between two systems. In the absence of complete local description of one of the subsystems quantified by the local uncertainty relation , the correlation between subsystems becomes nonlocal. Remarkably, different nonlocal quantum correlations can be discriminated from a single uncertainty relation derived under local hidden state (LHS)–LHS model only. We experimentally characterize the two-qubit Werner state in different scenarios.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2021-05-07)
    Abstract: Bohr’s complementarity is one central tenet of quantum physics. The paradoxical wave-particle duality of quantum matters and photons has been tested in Young’s double-slit (double-path) interferometers. The object exclusively exhibits wave and particle nature, depending measurement apparatus that can be delayed chosen to rule out too-naive interpretations of quantum complementarity. All experiments to date have been implemented in the double-path framework, while it is of fundamental interest to study complementarity in multipath interferometric systems. Here, we demonstrate generalized multipath wave-particle duality in a quantum delayed-choice experiment, implemented by large-scale silicon-integrated multipath interferometers. Single-photon displays sophisticated transitions between wave and particle characters, determined by the choice of quantum-controlled generalized Hadamard operations. We characterise particle-nature by multimode which-path information and wave-nature by multipath coherence of interference, and demonstrate the generalisation of Bohr’s multipath duality relation. Our work provides deep insights into multidimensional quantum physics and benchmarks controllability of integrated photonic quantum technology.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Nature Photonics Vol. 17, No. 7 ( 2023-07), p. 573-581
    In: Nature Photonics, Springer Science and Business Media LLC, Vol. 17, No. 7 ( 2023-07), p. 573-581
    Abstract: Graphs have provided an expressive mathematical tool to model quantum-mechanical devices and systems. In particular, it has been recently discovered that graph theory can be used to describe and design quantum components, devices, setups and systems, based on the two-dimensional lattice of parametric nonlinear optical crystals and linear optical circuits, different to the standard quantum photonic framework. Realizing such graph-theoretical quantum photonic hardware, however, remains extremely challenging experimentally using conventional technologies. Here we demonstrate a graph-theoretical programmable quantum photonic device in very-large-scale integrated nanophotonic circuits. The device monolithically integrates about 2,500 components, constructing a synthetic lattice of nonlinear photon-pair waveguide sources and linear optical waveguide circuits, and it is fabricated on an eight-inch silicon-on-insulator wafer by complementary metal–oxide–semiconductor processes. We reconfigure the quantum device to realize and process complex-weighted graphs with different topologies and to implement different tasks associated with the perfect matching property of graphs. As two non-trivial examples, we show the generation of genuine multipartite multidimensional quantum entanglement with different entanglement structures, and the measurement of probability distributions proportional to the modulus-squared hafnian (permanent) of the graph’s adjacency matrices. This work realizes a prototype of graph-theoretical quantum photonic devices manufactured by very-large-scale integration technologies, featuring arbitrary programmability, high architectural modularity and massive manufacturing scalability.
    Type of Medium: Online Resource
    ISSN: 1749-4885 , 1749-4893
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2264673-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...