GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (3)
  • Chen, Tao  (3)
Material
Publisher
  • MDPI AG  (3)
Language
Years
  • 1
    In: Metals, MDPI AG, Vol. 10, No. 6 ( 2020-06-05), p. 754-
    Abstract: The influence of heat and droplet transfer into weld pool dynamic behavior and weld metal microstructure in double-pulsed gas metal arc welding (DP-GMAW) was investigated by the self-designed high-speed welding photography system. The heat input, the arc pressure, the droplet momentum and impingement pressure were measured and calculated. It was found that the arc pressure is far less than the droplet impingement pressure. The heat input and droplet impingement pressure per unit time acting on weld pool were proportional to the current pulse frequency, which fluctuated with thermal pulse. The size and oscillation amplitude of the weld pool had noticeable periodic changes synchronized with the process of heat input and droplet impingement. Compared to the microstructure of pulsed gas metal arc welding (P-GMAW) weld metal, that of DP-GMAW weld metal was significantly refined. High oscillation amplitude assisted the enhancement of weld pool convection, which leads to more constitutional supercooling. The heat input and shear force during the peak of thermal pulse causing dendrite fragmentation which provided sufficient crystal nucleus for the growth of equiaxed grains and the possibility of grain refinement. The effects of current parameters on welding behavior and weld metal grain size are investigated for further understanding of DP-GMAW.
    Type of Medium: Online Resource
    ISSN: 2075-4701
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662252-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Fungi, MDPI AG, Vol. 7, No. 7 ( 2021-06-22), p. 493-
    Abstract: The infection by a single-stranded DNA virus, Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1), causes hypovirulence, a reduced growth rate, and other colony morphological changes in its host Sclerotinia sclerotiorum strain DT-8. However, the mechanisms of the decline are still unclear. Using digital RNA sequencing, a transcriptome analysis was conducted to elucidate the phenotype-related genes with expression changes in response to SsHADV-1 infection. A total of 3110 S. sclerotiorum differentially expressed genes (DEGs) were detected during SsHADV-1 infection, 1741 of which were up-regulated, and 1369 were down-regulated. The identified DEGs were involved in several important pathways. DNA replication, DNA damage response, carbohydrate and lipid metabolism, ribosomal assembly, and translation were the affected categories in S. sclerotiorum upon SsHADV-1 infection. Moreover, the infection of SsHADV-1 also suppressed the expression of antiviral RNA silencing and virulence factor genes. These results provide further detailed insights into the effects of SsHADV-1 infection on the whole genome transcription in S. sclerotiorum.
    Type of Medium: Online Resource
    ISSN: 2309-608X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2784229-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Diagnostics, MDPI AG, Vol. 12, No. 6 ( 2022-06-09), p. 1423-
    Abstract: Background: Graf’s method is currently the most commonly used ultrasound-based technique for the diagnosis of developmental dysplasia of the hip (DDH). However, the efficiency and accuracy of diagnosis are highly affected by the sonographers’ qualification and the time and effort expended, which has a significant intra- and inter-observer variability. Methods: Aiming to minimize the manual intervention in the diagnosis process, we developed a deep learning-based computer-aided framework for the DDH diagnosis, which can perform fully automated standard plane detection and angle measurement for Graf type I and type II hips. The proposed framework is composed of three modules: an anatomical structure detection module, a standard plane scoring module, and an angle measurement module. This framework can be applied to two common clinical scenarios. The first is the static mode, measurement and classification are performed directly based on the given standard plane. The second is the dynamic mode, where a standard plane from ultrasound video is first determined, and measurement and classification are then completed. To the best of our knowledge, our proposed framework is the first CAD method that can automatically perform the entire measurement process of Graf’s method. Results: In our experiments, 1051 US images and 289 US videos of Graf type I and type II hips were used to evaluate the performance of the proposed framework. In static mode, the mean absolute error of α, β angles are 1.71° and 2.40°, and the classification accuracy is 94.71%. In dynamic mode, the mean absolute error of α, β angles are 1.97° and 2.53°, the classification accuracy is 89.51%, and the running speed is 31 fps. Conclusions: Experimental results demonstrate that our fully automated framework can accurately perform standard plane detection and angle measurement of an infant’s hip at a fast speed, showing great potential for clinical application.
    Type of Medium: Online Resource
    ISSN: 2075-4418
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662336-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...