GLORIA

GEOMAR Library Ocean Research Information Access

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (1)
  • Chen, Shuyu  (1)
  • Wa, Shiyun  (1)
Material
Publisher
  • MDPI AG  (1)
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Remote Sensing Vol. 14, No. 4 ( 2022-02-14), p. 923-
    In: Remote Sensing, MDPI AG, Vol. 14, No. 4 ( 2022-02-14), p. 923-
    Abstract: There has been substantial progress in small object detection in aerial images in recent years, due to the extensive applications and improved performances of convolutional neural networks (CNNs). Typically, traditional machine learning algorithms tend to prioritize inference speed over accuracy. Insufficient samples can cause problems for convolutional neural networks, such as instability, non-convergence, and overfitting. Additionally, detecting aerial images has inherent challenges, such as varying altitudes and illuminance situations, and blurred and dense objects, resulting in low detection accuracy. As a result, this paper adds a transformer backbone attention mechanism as a branch network, using the region-wide feature information. This paper also employs a generative model to expand the input aerial images ahead of the backbone. The respective advantages of the generative model and transformer network are incorporated. On the dataset presented in this study, the model achieves 96.77% precision, 98.83% recall, and 97.91% mAP by adding the Multi-GANs module to the one-stage detection network. These three indices are enhanced by 13.9%, 20.54%, and 10.27%, respectively, when compared to the other detection networks. Furthermore, this study provides an auto-pruning technique that may achieve 32.2 FPS inference speed with a minor performance loss while responding to the real-time detection task’s usage environment. This research also develops a macOS application for the proposed algorithm using Swift development technology.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...