GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (4)
  • Chen, Ling  (4)
Material
Publisher
  • MDPI AG  (4)
Language
Years
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Materials Vol. 12, No. 14 ( 2019-07-19), p. 2315-
    In: Materials, MDPI AG, Vol. 12, No. 14 ( 2019-07-19), p. 2315-
    Abstract: The crystal structures, mechanical properties, and electrical properties of Cu doped SnO2, F doped SnO2, and Cu F co-doped SnO2 were studied by using the first-principles method. Meanwhile, AgSnO2, AgSnO2-F, AgSnO2-Cu, and AgSnO2-Cu-F contacts were prepared by using the sol-gel method for a series of experiments to verify the theoretical analysis. According to the XRD patterns, the doping does not change the structure of SnO2, but increases its lattice constant and volume. Compared with the single-doped system, the doping formation energy of Cu F co-doped system is the smallest and the structure is more stable. Among the three groups of doping systems, the Cu F co-doped system has the highest shear modulus, Young’s modulus, hardness, and Debye temperature, and its mechanical properties and wear resistance are relatively best, and the melting point is also the highest. Cu F co-doping can further narrow the band gap of SnO2, reduce the electron effective mass and donor ionization energy, increase the electron mobility, and further enhance the conductivity of SnO2. The wetting angle of SnO2-Cu-F sample with Ag liquid is 1.15°, which indicates that Cu and F co-doping can significantly improve the wettability of SnO2 and Ag liquid. AgSnO2-Cu-F contact has a hardness of 82.03 HV, an electrical conductivity of 31.20 mS⋅m−1, and a contact resistance of 1.048 mΩ. Cu F co-doping can improve the shortcomings of AgSnO2 contact properties.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Environmental Research and Public Health Vol. 19, No. 16 ( 2022-08-16), p. 10116-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 19, No. 16 ( 2022-08-16), p. 10116-
    Abstract: In Taipu River, after being transformed from a drainage channel to a drinking water supply river in 1995, heavy metals that have accumulated in sediments have become an environmental issue. Herein, we collected sediments of Taipu River in 2018, 2020, and 2021 and analyzed the distribution of Sb, As, Cd, Cu, Pb, Cr, and Zn to identify their sources. The results revealed that the mean concentrations of heavy metals were above the background values, except for Cr and As. During the non-flood season, the midstream of Taipu River becomes a heavy metal hotspot, with their concentrations 2–5 times higher than those in upstream sediment. There were significant correlations (r = 0.79–0.99) among drainage, precipitation and flow rate, which indicated that drainage caused by both the opening of Taipu Gate and precipitation control the flow rate and, then, possibly influenced the distribution of heavy metals. Moreover, three sources (industrial sources, particle deposition sources, and natural sources) were characterized as the determinants for the accumulation of heavy metal by the Positive Matrix Factorization model, with the contribution rates of 41.7%, 32.9%, and 25.4%, respectively. It is recommended that the influence of hydrological conditions and industrial activities should be a key consideration when developing regulations for the management of heavy metals in rivers.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Foods, MDPI AG, Vol. 10, No. 12 ( 2021-12-14), p. 3105-
    Abstract: Edible starch-based film was developed for packaging seasoning applied in instant noodles. The edible film can quickly dissolve into hot water so that the seasoning bag can mix in the soup of instant noodles during preparation. To meet the specific requirements of the packaging, such as reasonable high tensile properties, ductility under arid conditions, and low gas permeability, hydroxypropyl cornstarch with various edible additives from food-grade ingredients were applied to enhance the functionality of starch film. In this work, xylose was used as a plasticizer, cellulose crystals were used as a reinforcing agent, and laver was used to decrease gas permeability. The microstructures, interface, and compatibility of various components and film performance were investigated using an optical microscope under polarized light, scanning electron microscope, gas permeability, and tensile testing. The relationship was established between processing methodologies, microstructures, and performances. The results showed that the developed starch-based film have a modulus of 960 MPa, tensile strength of 36 Mpa with 14% elongation, and water vapor permeability less than 5.8 g/m2.h under 20% RH condition at room temperature (25 °C), which meets the general requirements of the flavor bag packaging used in instant noodles.
    Type of Medium: Online Resource
    ISSN: 2304-8158
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2704223-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Biomedicines, MDPI AG, Vol. 11, No. 3 ( 2023-03-21), p. 973-
    Abstract: Astrocyte inflammation activation is an important cause that hinders the recovery of motor function after cerebral ischemia. However, its molecular mechanism has not yet been clearly clarified. The peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated nuclear transcriptional factor. This study aims to further clarify the role of PPARα in astrocyte inflammation activation after cerebral ischemia and to explore the underlying mechanism. Astrocyte activation was induced in an in vivo model by transient middle cerebral artery occlusion (tMCAO) in mice. The in vitro model was induced by an oxygen-glucose deprivation/reoxygenation (OGD/R) in a primary culture of mouse astrocyte. PPARα-deficient mice were used to observe the effects of PPARα on astrocyte activation and autophagic flux. Our results showed that PPARα was mainly expressed in activated astrocytes during the chronic phase of brain ischemia and PPARα dysfunction promoted astrocyte inflammatory activation. After cerebral ischemia, the expressions of LC3-II/I and p62 both increased. Autophagic vesicle accumulation was observed by electron microscopy in astrocytes, and the block of autophagic flux was indicated by an mRFP-GFP-LC3 adenovirus infection assay. A PPARα deficit aggravated the autophagic flux block, while PPARα activation preserved the lysosome function and restored autophagic flux in astrocytes after OGD/R. The autophagic flux blocker bafilomycin A1 and chloroquine antagonized the effect of the PPARα agonist on astrocyte activation inhibition. This study identifies a potentially novel function of PPARα in astrocyte autophagic flux and suggests a therapeutic target for the prevention and treatment of chronic brain ischemic injury.
    Type of Medium: Online Resource
    ISSN: 2227-9059
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2720867-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...