GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (4)
  • Chen, Hui  (4)
  • 1
    In: Forests, MDPI AG, Vol. 11, No. 1 ( 2020-01-11), p. 91-
    Abstract: Camellia oleifera Abel. is a critical oil tree species. Camellia oil, which is extracted from the seeds, is widely regarded as a premium cooking oil, with the content of oleic acid being over 80%. Light is thought to be one of the largest essential natural components in the regulation of plant developmental processes, and different light qualities can considerably influence plant physiological and phenotypic traits. In this research, we examined the growth and physiological responses of C. oleifera “MIN 43” cultivar plantlets to three different wavelengths of light, containing white, red, and blue light, and we utilized the combination of the PacBio single-molecule real-time (SMRT) and Illumina HiSeq RNA sequencing to obtain the mRNA expression profiles. The results showed that plantlets growing under blue light conditions displayed superior growth performance, including stimulated enhancement of the leaf area, increased leaf number, increased chlorophyll synthesis, and improved photosynthesis. Furthermore, SMAT sequencing created 429,955 reads of inserts, where 406,722 of them were full-length non-chimeric reads, and 131,357 non-redundant isoforms were produced. Abundant differentially expressed genes were found in leaves under different light qualities by RNA-sequencing. Gene expression profiles of actin, dynein, tubulin, defectively organized tributaries 3 (DOT3), and ADP ribosylation factor 5 (ARF5) were associated with the greatest leaf performance occurring under blue light conditions. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified hundreds of pathways involved in different light conditions. The pathways of the plant circadian rhythm and hormone signal transduction were associated with different light quality responses in C. oleifera. Phytochrome B (PHYB), constitutively photomorphogenic 1 (COP1), long hypocotyl 5 (HY5), auxin/indole-3-acetic acid (AUX/IAA), Gretchen Hagen 3 (GH3), and small auxin-up RNA (SAUR), which were differentially expressed genes involved in these two pathways, play a vital role in responses to different wavelengths of light in C. oleifera. In addition, blue light significantly promotes flavonoid biosynthesis via changing expression of related genes.
    Type of Medium: Online Resource
    ISSN: 1999-4907
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2527081-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 19, No. 9 ( 2018-09-13), p. 2755-
    Abstract: Tartary buckwheat is a type of cultivated medicinal and edible crop with good economic and nutritional value. Knowledge of the final fruit size of buckwheat is critical to its yield increase. In this study, the fruit development of two species of Tartary buckwheat in the Polygonaceae was analyzed. During fruit development, the size/weight, the contents of auxin (AUX)/abscisic acid (ABA), the number of cells, and the changes of embryo were measured and observed; and the two fruit materials were compared to determine the related mechanisms that affected fruit size and the potential factors that regulated the final fruit size. The early events during embryogenesis greatly influenced the final fruit size, and the difference in fruit growth was primarily due to the difference in the number of cells, implicating the effect of cell division rate. Based on our observations and recent reports, the balance of AUX and ABA might be the key factor that regulated the cell division rate. They induced the response of auxin response factor 2 (FtARF2) and downstream small auxin upstream RNA (FtSAURs) through hormone signaling pathway to regulate the fruit size of Tartary buckwheat. Further, through the induction of fruit expansion by exogenous auxin, FtARF2b was significantly downregulated. The FtARF2b is a potential target for molecular breeding or gene editing.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 15 ( 2022-07-30), p. 8480-
    Abstract: Soil salinization is a global problem that limits crop yields and threatens agricultural development. Auxin-induced expansins contribute to plant salt tolerance through cell wall loosening. However, how auxins and expansins contribute to the adaptation of the halophyte quinoa (Chenopodium quinoa) to salt stress has not yet been reported. Here, auxin was found to contribute to the salt tolerance of quinoa by promoting the accumulation of photosynthetic pigments under salt stress, maintaining enzymatic and nonenzymatic antioxidant systems and scavenging excess reactive oxygen species (ROS). The Chenopodium quinoa expansin (Cqexpansin) family and the auxin pathway gene family (Chenopodium quinoa auxin response factor (CqARF), Chenopodium quinoa auxin/indoleacetic acid (CqAux/IAA), Chenopodium quinoa Gretchen Hagen 3 (CqGH3) and Chenopodium quinoa small auxin upregulated RNA (CqSAUR)) were identified from the quinoa genome. Combined expression profiling identified Chenopodium quinoa α-expansin 50 (CqEXPA50) as being involved in auxin-mediated salt tolerance. CqEXPA50 enhanced salt tolerance in quinoa seedlings was revealed by transient overexpression and physiological and biochemical analyses. Furthermore, the auxin pathway and salt stress-related genes regulated by CqEXPA50 were identified. The interaction of CqEXPA50 with these proteins was demonstrated by bimolecular fluorescence complementation (BIFC). The proteins that interact with CqEXPA50 were also found to improve salt tolerance. In conclusion, this study identified some genes potentially involved in the salt tolerance regulatory network of quinoa, providing new insights into salt tolerance.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 19, No. 11 ( 2018-11-09), p. 3526-
    Abstract: Auxin signaling plays an important role in plant growth and development. It responds to various developmental and environmental events, such as embryogenesis, organogenesis, shoot elongation, tropical growth, lateral root formation, flower and fruit development, tissue and organ architecture, and vascular differentiation. However, there has been little research on the Auxin Response Factor (ARF) genes of tartary buckwheat (Fagopyrum tataricum), an important edible and medicinal crop. The recent publication of the whole-genome sequence of tartary buckwheat enables us to study the tissue and expression profile of the FtARF gene on a genome-wide basis. In this study, 20 ARF (FtARF) genes were identified and renamed according to the chromosomal distribution of the FtARF genes. The results showed that the FtARF genes belonged to the related sister pair, and the chromosomal map showed that the duplication of FtARFs was related to the duplication of the chromosome blocks. The duplication of some FtARF genes shows conserved intron/exon structure, which is different from other genes, suggesting that the function of these genes may be diverse. Real-time quantitative PCR analysis exhibited distinct expression patterns of FtARF genes in various tissues and in response to exogenous auxin during fruit development. In this study, 20 FtARF genes were identified, and the structure, evolution, and expression patterns of the proteins were studied. This systematic analysis laid a foundation for the further study of the functional characteristics of the ARF genes and for the improvement of tartary buckwheat crops.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...