GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (1)
  • Chen, Bin  (1)
Material
Publisher
  • AIP Publishing  (1)
Language
Years
  • 1
    In: Applied Physics Reviews, AIP Publishing, Vol. 9, No. 1 ( 2022-03-01)
    Abstract: Exploring effective, facile, and universal tuning strategies to optimize material physicochemical properties and catalysis processes is critical for many sustainable energy systems, but still challenging. Herein, we succeed to introduce tensile strain into various perovskites via a facile thermochemical reduction method, which can greatly improve material performance for the bottleneck oxygen-evolving reaction in water electrolysis. As an ideal proof-of-concept, such a chemical-induced tensile strain turns hydrophobic Ba5Co4.17Fe0.83O14-δ perovskite into the hydrophilic one by modulating its solid–liquid tension, contributing to its beneficial adsorption of important hydroxyl reactants as evidenced by fast operando spectroscopy. Both surface-sensitive and bulk-sensitive absorption spectra show that this strategy introduces oxygen vacancies into the saturated face-sharing Co-O motifs of Ba5Co4.17Fe0.83O14-δ and transforms such local structures into the unsaturated edge-sharing units with positive charges and enlarged electrochemical active areas, creating a molecular-level hydroxyl pool. Theoretical computations reveal that this strategy well reduces the thermodynamic energy barrier for hydroxyl adsorption, lowers the electronic work function, and optimizes the charge/electrostatic potential distribution to facilitate the electron transport between active sites and hydroxyl reactants. Also, this strategy is reliable for other single, double, and Ruddlesden–Popper perovskites. We believe that this finding will enlighten rational material design and in-depth understanding for many potential applications.
    Type of Medium: Online Resource
    ISSN: 1931-9401
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 2265524-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...