GLORIA

GEOMAR Library Ocean Research Information Access

Ihre Suchhistorie ist leer.

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Springer Science and Business Media LLC  (3)
  • Chen, Bin  (3)
  • Xiang, Jie  (3)
Materialart
Verlag/Herausgeber
  • Springer Science and Business Media LLC  (3)
Person/Organisation
Sprache
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2020
    In:  BMC Musculoskeletal Disorders Vol. 21, No. 1 ( 2020-12)
    In: BMC Musculoskeletal Disorders, Springer Science and Business Media LLC, Vol. 21, No. 1 ( 2020-12)
    Kurzfassung: Recently, the infra-acetabular screw has been proposed for use in treatment of acetabular fractures as a part of a periacetabular fixation frame. Biomechanical studies have shown that an additional infra-acetabular screw placement can enhance the fixation strength of acetabular fracture internal fixation. Currently, the reported exit point of the infra-acetabular screw has been located at the ischial tuberosity (Screw I). However, our significant experience in placement of the infra-acetabular screw has suggested that when the exit point is located between the ischial tuberosity and the ischial spine (Screw II), the placement of a 3.5 mm infra-acetabular screw may be easier for some patients. We conducted this study in order to determine the anatomical differences between the two different IACs. Methods The raw datasets were reconstructed into 3D models using the software MIMICS. Then, the models, in the STL format model, were imported into the software Geomagic Studio to delete the inner triangular patches. Additionally, the STL format image processed by Geomagic Studio was imported again into MIMICS. Finally, we used an axial perspective based on 3D models in order to study the anatomical parameters of the two infra-acetabular screw corridors with different exit points. Hence, we placed the largest diameter virtual screw in the two different screw corridors. The data obtained from this study presents the maximum diameter, length, direction, and distances between the entry point and center of IPE. Results In 65.31% males and 40.54% females, we found a screw I corridor with a diameter of at least 5 mm, while a screw II corridor was present in 77.55% in males and 62.16% in females. Compared to screw I, the length of screw II is reduced, the angle with the coronal plane is significantly reduced, and the angle with the transverse plane is significantly increased. Conclusions For East Asians, changing the exit point of the infra-acetabular screw can increase the scope of infra-acetabular screw use, especially for females.
    Materialart: Online-Ressource
    ISSN: 1471-2474
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2020
    ZDB Id: 2041355-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2021
    In:  BMC Musculoskeletal Disorders Vol. 22, No. 1 ( 2021-12)
    In: BMC Musculoskeletal Disorders, Springer Science and Business Media LLC, Vol. 22, No. 1 ( 2021-12)
    Kurzfassung: The aim of this study was to investigate the applicable safety and biomechanical stability of iliosacral triangular osteosynthesis (ITO) through 3D modeling and finite element (FE) analysis. Methods Pelvic CT imaging data from 100 cases were imported into Mimics software for the construction of 3D pelvic models. The S2-alar-iliac (S2AI) screws and S2 sacroiliac screws were placed in the S2 segment with optimal distribution and their compatibility rate on the S2 safe channel was observed and analyzed. In the FE model, the posterior pelvic ring was fixed with two transsacral screws (TTS), triangular osteosynthesis (TO) and ITO, respectively. Four different loading methods were implemented in sequence to simulate the force in standing, flexion, right bending, and left twisting, respectively. The relative displacement and change in relative displacement of the three fixing methods were recorded and analyzed. Results The theoretical compatibility rate of S2AI screw and S2 sacroiliac screw in S2 segment was 94%, of which 100% were in males and 88% in females. In the FE model, in terms of overall relative displacement, TTS group showed the smallest relative displacement, the ITO group showed the second smallest, and the TO group the largest relative displacement. The change in relative displacement of the TTS group displayed the smaller fluctuations in motion. The change in relative displacement of the TO group under right bending and left twisting displayed larger fluctuations, while the ITO group under flexion displayed larger fluctuations. Conclusions The simultaneous placement of S2AI screw and S2 sacroiliac screw in the S2 segment is theoretically safe. Although the biomechanical stability of ITO is slightly lower than TTS, it is better than TO, and can be used as a new method for the treatment of posterior pelvic ring injuries.
    Materialart: Online-Ressource
    ISSN: 1471-2474
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2021
    ZDB Id: 2041355-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2021
    In:  Journal of Orthopaedic Surgery and Research Vol. 16, No. 1 ( 2021-12)
    In: Journal of Orthopaedic Surgery and Research, Springer Science and Business Media LLC, Vol. 16, No. 1 ( 2021-12)
    Kurzfassung: Five different sacral fracture fixation methods were compared using finite element (FE) analysis to study their biomechanical characteristics. Methods Denis type I sacral fractures were created by FE modeling. Five different fixation methods for the posterior pelvic ring were simulated: sacroiliac screw (SIS), lumbopelvic fixation (LPF), transiliac internal fixator (TIFI), S2-alar-iliac (S2AI) screw and S1 pedicle screw fixation (S2AI-S1) and S2AI screw and contralateral S1 pedicle screw fixation (S2AI-CS1). Four different loading methods were implemented in sequence to simulate the force in standing, flexion, right bending and left twisting, respectively. Vertical stiffness, relative displacement and change in relative displacement were recorded and analyzed. Results As predicted by the FE model, the vertical stiffness of the five groups in descending order was S2AI-S1, SIS, S2AI-CS1, LPF and TIFI. In terms of relative displacement, groups S2AI-S1 and S2AI-CS1 displayed a lower mean relative displacement, although group S2AI-CS1 exhibited greater displacement in the upper sacrum than group S2AI-S1. Group SIS displayed a moderate mean relative displacement, although the displacement of the upper sacrum was smaller than the corresponding displacement in group S2AI-CS1, while groups LPF and TIFI displayed larger mean relative displacements. Finally, in terms of change in relative displacement, groups TIFI and LPF displayed the greatest fluctuations in their motion, while groups SIS, S2AI-S1 and S2AI-CS1 displayed smaller fluctuations. Conclusion Compared with SIS, unilateral LPF and TIFI, group S2AI-S1 displayed the greatest biomechanical stability of the Denis type I sacral fracture FE models. When the S1 pedicle screw insertion point on the affected side is damaged, S2AI-CS1 can be used as an appropriate alternative to S2AI-S1.
    Materialart: Online-Ressource
    ISSN: 1749-799X
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2021
    ZDB Id: 2252548-8
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...