GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (7)
  • Chang-Claude, Jenny  (7)
  • 1
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 21, No. 23 ( 2015-12-01), p. 5264-5276
    Abstract: Purpose: Chemotherapy resistance remains a major challenge in the treatment of ovarian cancer. We hypothesize that germline polymorphisms might be associated with clinical outcome. Experimental Design: We analyzed approximately 2.8 million genotyped and imputed SNPs from the iCOGS experiment for progression-free survival (PFS) and overall survival (OS) in 2,901 European epithelial ovarian cancer (EOC) patients who underwent first-line treatment of cytoreductive surgery and chemotherapy regardless of regimen, and in a subset of 1,098 patients treated with ≥4 cycles of paclitaxel and carboplatin at standard doses. We evaluated the top SNPs in 4,434 EOC patients, including patients from The Cancer Genome Atlas. In addition, we conducted pathway analysis of all intragenic SNPs and tested their association with PFS and OS using gene set enrichment analysis. Results: Five SNPs were significantly associated (P ≤ 1.0 × 10−5) with poorer outcomes in at least one of the four analyses, three of which, rs4910232 (11p15.3), rs2549714 (16q23), and rs6674079 (1q22), were located in long noncoding RNAs (lncRNAs) RP11-179A10.1, RP11-314O13.1, and RP11-284F21.8, respectively (P ≤ 7.1 × 10−6). ENCODE ChIP-seq data at 1q22 for normal ovary show evidence of histone modification around RP11-284F21.8, and rs6674079 is perfectly correlated with another SNP within the super-enhancer MEF2D, expression levels of which were reportedly associated with prognosis in another solid tumor. YAP1- and WWTR1 (TAZ)-stimulated gene expression and high-density lipoprotein (HDL)-mediated lipid transport pathways were associated with PFS and OS, respectively, in the cohort who had standard chemotherapy (pGSEA ≤6 × 10−3). Conclusions: We have identified SNPs in three lncRNAs that might be important targets for novel EOC therapies. Clin Cancer Res; 21(23); 5264–76. ©2015 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 17 ( 2016-09-01), p. 5103-5114
    Abstract: Identifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-stage approach to conduct genome-wide association studies for lung, ovary, breast, prostate, and colorectal cancer from the GAME-ON/GECCO Network (61,851 cases, 61,820 controls) to identify pleiotropic loci. Findings were replicated in independent association studies (55,789 cases, 330,490 controls). We identified a novel pleiotropic association at 1q22 involving breast and lung squamous cell carcinoma, with eQTL analysis showing an association with ADAM15/THBS3 gene expression in lung. We also identified a known breast cancer locus CASP8/ALS2CR12 associated with prostate cancer, a known cancer locus at CDKN2B-AS1 with different variants associated with lung adenocarcinoma and prostate cancer, and confirmed the associations of a breast BRCA2 locus with lung and serous ovarian cancer. This is the largest study to date examining pleiotropy across multiple cancer-associated loci, identifying common mechanisms of cancer development and progression. Cancer Res; 76(17); 5103–14. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 24, No. 10 ( 2015-10-01), p. 1574-1584
    Abstract: Background: Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by coexpression may also be enriched for additional EOC risk associations. Methods: We selected TF genes within 1 Mb of the top signal at the 12 genome-wide significant risk loci. Mutual information, a form of correlation, was used to build networks of genes strongly coexpressed with each selected TF gene in the unified microarray dataset of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this dataset were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls). Results: Gene set enrichment analysis identified six networks centered on TF genes (HOXB2, HOXB5, HOXB6, HOXB7 at 17q21.32 and HOXD1, HOXD3 at 2q31) that were significantly enriched for genes from the risk-associated end of the ranked list (P & lt; 0.05 and FDR & lt; 0.05). These results were replicated (P & lt; 0.05) using an independent association study (7,035 cases/21,693 controls). Genes underlying enrichment in the six networks were pooled into a combined network. Conclusion: We identified a HOX-centric network associated with serous EOC risk containing several genes with known or emerging roles in serous EOC development. Impact: Network analysis integrating large, context-specific datasets has the potential to offer mechanistic insights into cancer susceptibility and prioritize genes for experimental characterization. Cancer Epidemiol Biomarkers Prev; 24(10); 1574–84. ©2015 AACR.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 3 ( 2019-02-01), p. 505-517
    Abstract: DNA methylation is instrumental for gene regulation. Global changes in the epigenetic landscape have been recognized as a hallmark of cancer. However, the role of DNA methylation in epithelial ovarian cancer (EOC) remains unclear. In this study, high-density genetic and DNA methylation data in white blood cells from the Framingham Heart Study (N = 1,595) were used to build genetic models to predict DNA methylation levels. These prediction models were then applied to the summary statistics of a genome-wide association study (GWAS) of ovarian cancer including 22,406 EOC cases and 40,941 controls to investigate genetically predicted DNA methylation levels in association with EOC risk. Among 62,938 CpG sites investigated, genetically predicted methylation levels at 89 CpG were significantly associated with EOC risk at a Bonferroni-corrected threshold of P & lt; 7.94 × 10−7. Of them, 87 were located at GWAS-identified EOC susceptibility regions and two resided in a genomic region not previously reported to be associated with EOC risk. Integrative analyses of genetic, methylation, and gene expression data identified consistent directions of associations across 12 CpG, five genes, and EOC risk, suggesting that methylation at these 12 CpG may influence EOC risk by regulating expression of these five genes, namely MAPT, HOXB3, ABHD8, ARHGAP27, and SKAP1. We identified novel DNA methylation markers associated with EOC risk and propose that methylation at multiple CpG may affect EOC risk via regulation of gene expression. Significance: Identification of novel DNA methylation markers associated with EOC risk suggests that methylation at multiple CpG may affect EOC risk through regulation of gene expression.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 25, No. 5 ( 2016-05-01), p. 780-790
    Abstract: Background: Many epithelial ovarian cancer (EOC) risk factors relate to hormone exposure and elevated estrogen levels are associated with obesity in postmenopausal women. Therefore, we hypothesized that gene–environment interactions related to hormone-related risk factors could differ between obese and non-obese women. Methods: We considered interactions between 11,441 SNPs within 80 candidate genes related to hormone biosynthesis and metabolism and insulin-like growth factors with six hormone-related factors (oral contraceptive use, parity, endometriosis, tubal ligation, hormone replacement therapy, and estrogen use) and assessed whether these interactions differed between obese and non-obese women. Interactions were assessed using logistic regression models and data from 14 case–control studies (6,247 cases; 10,379 controls). Histotype-specific analyses were also completed. Results: SNPs in the following candidate genes showed notable interaction: IGF1R (rs41497346, estrogen plus progesterone hormone therapy, histology = all, P = 4.9 × 10−6) and ESR1 (rs12661437, endometriosis, histology = all, P = 1.5 × 10−5). The most notable obesity–gene–hormone risk factor interaction was within INSR (rs113759408, parity, histology = endometrioid, P = 8.8 × 10−6). Conclusions: We have demonstrated the feasibility of assessing multifactor interactions in large genetic epidemiology studies. Follow-up studies are necessary to assess the robustness of our findings for ESR1, CYP11A1, IGF1R, CYP11B1, INSR, and IGFBP2. Future work is needed to develop powerful statistical methods able to detect these complex interactions. Impact: Assessment of multifactor interaction is feasible, and, here, suggests that the relationship between genetic variants within candidate genes and hormone-related risk factors may vary EOC susceptibility. Cancer Epidemiol Biomarkers Prev; 25(5); 780–90. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 25, No. 11 ( 2016-11-01), p. 1503-1510
    Abstract: Background: The strongest known risk factor for endometrial cancer is obesity. To determine whether SNPs associated with increased body mass index (BMI) or waist–hip ratio (WHR) are associated with endometrial cancer risk, independent of measured BMI, we investigated relationships between 77 BMI and 47 WHR SNPs and endometrial cancer in 6,609 cases and 37,926 country-matched controls. Methods: Logistic regression analysis and fixed effects meta-analysis were used to test for associations between endometrial cancer risk and (i) individual BMI or WHR SNPs, (ii) a combined weighted genetic risk score (wGRS) for BMI or WHR. Causality of BMI for endometrial cancer was assessed using Mendelian randomization, with BMIwGRS as instrumental variable. Results: The BMIwGRS was significantly associated with endometrial cancer risk (P = 3.4 × 10−17). Scaling the effect of the BMIwGRS on endometrial cancer risk by its effect on BMI, the endometrial cancer OR per 5 kg/m2 of genetically predicted BMI was 2.06 [95% confidence interval (CI), 1.89–2.21], larger than the observed effect of BMI on endometrial cancer risk (OR = 1.55; 95% CI, 1.44–1.68, per 5 kg/m2). The association attenuated but remained significant after adjusting for BMI (OR = 1.22; 95% CI, 1.10–1.39; P = 5.3 × 10−4). There was evidence of directional pleiotropy (P = 1.5 × 10−4). BMI SNP rs2075650 was associated with endometrial cancer at study-wide significance (P & lt; 4.0 × 10−4), independent of BMI. Endometrial cancer was not significantly associated with individual WHR SNPs or the WHRwGRS. Conclusions: BMI, but not WHR, is causally associated with endometrial cancer risk, with evidence that some BMI-associated SNPs alter endometrial cancer risk via mechanisms other than measurable BMI. Impact: The causal association between BMI SNPs and endometrial cancer has possible implications for endometrial cancer risk modeling. Cancer Epidemiol Biomarkers Prev; 25(11); 1503–10. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 6, No. 9 ( 2016-09-01), p. 1052-1067
    Abstract: Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P & lt; 10−8 seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type–specific expression quantitative trait locus and enhancer–gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P & lt; 10−5 in the three-cancer meta-analysis. Significance: We demonstrate that combining large-scale GWA meta-analysis findings across cancer types can identify completely new risk loci common to breast, ovarian, and prostate cancers. We show that the identification of such cross-cancer risk loci has the potential to shed new light on the shared biology underlying these hormone-related cancers. Cancer Discov; 6(9); 1052–67. ©2016 AACR. This article is highlighted in the In This Issue feature, p. 932
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...