GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chang, Nicolette  (2)
  • 1
    In: ICES Journal of Marine Science, Oxford University Press (OUP), Vol. 67, No. 7 ( 2010-10-01), p. 1323-1335
    Abstract: Martins, R. S., Roberts, M. J., Chang, N., Verley, P., Moloney, C. L., and Vidal, E. A. G. 2010. Effect of yolk utilization on the specific gravity of chokka squid (Loligo reynaudii) paralarvae: implications for dispersal on the Agulhas Bank, South Africa. – ICES Journal of Marine Science, 67: 1323–1335. Specific gravity is an important parameter in the dispersal of marine zooplankton, because the velocity of currents, and therefore the speed of transport, is usually greatest near the surface. For the South African chokka squid (Loligo reynaudii), recruitment is thought to be influenced by the successful transport of paralarvae from the spawning grounds to a food-rich feature known as the cold ridge some 100–200 km away. The role of paralarval specific gravity on such transport is investigated. Specific gravity ranged from 1.0373 to 1.0734 g cm−3 during the yolk-utilization phase, implying that paralarvae are always negatively buoyant, regardless of yolk content. The data were incorporated into a coupled individual-based model (IBM)—Regional Ocean Modelling System model. The output showed that dispersal was dominantly westward towards the cold ridge. Also, modelled paralarval vertical distribution suggested that hydrodynamic turbulence was an important factor in dispersal. The negative buoyancy of early chokka squid paralarvae may reduce the risk of paralarvae being advected off the eastern Agulhas Bank and into the open ocean, where food is less abundant, so specific gravity may be important in enhancing the survival and recruitment of chokka squid.
    Type of Medium: Online Resource
    ISSN: 1095-9289 , 1054-3139
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2010
    detail.hit.zdb_id: 2463178-4
    detail.hit.zdb_id: 1468003-8
    detail.hit.zdb_id: 29056-7
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Fisheries Oceanography, Wiley, Vol. 23, No. 2 ( 2014-03), p. 116-131
    Abstract: Annual landings of chokka squid ( L oligo reynaudii ), an important fishing resource for South Africa, fluctuate greatly, and are believed to be related to recruitment success. The ‘Westward Transport Hypothesis’ ( WTH ) attributes recruitment strength to variability in transport of newly hatched paralarvae from spawning grounds to the ‘cold ridge’ nursery region some 100–200 km to the west, where oceanographic conditions sustain high productivity. We used an individual‐based model ( IBM ) coupled with a 3‐D hydrodynamic model ( ROMS ) to test the WTH and assessed four factors that might influence successful transport – Release Area, Month, Specific Gravity (body density) and Diel Vertical Migration ( DVM ) – in numerical experiments that estimated successful transport of squid paralarvae to the cold ridge. A multifactor ANOVA was used to identify the primary determinants of transport success in the various experimental simulations. Among these, release area was found to be the most important, implying that adult spawning behaviour (i.e., birth site fidelity) may be more important than paralarval behaviour in determining paralarval transport variability. However, specific gravity and DVM were found to play a role by retaining paralarvae on the shelf and optimizing early transport, respectively. Upwelling events seem to facilitate transport by moving paralarvae higher in the water column and thus exposing them to faster surface currents.
    Type of Medium: Online Resource
    ISSN: 1054-6006 , 1365-2419
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 1214985-8
    detail.hit.zdb_id: 2020300-7
    SSG: 21,3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...