GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (4)
  • Chang, Jiang  (4)
Material
Publisher
  • MDPI AG  (4)
Language
Years
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Applied Sciences Vol. 13, No. 4 ( 2023-02-13), p. 2392-
    In: Applied Sciences, MDPI AG, Vol. 13, No. 4 ( 2023-02-13), p. 2392-
    Abstract: Modeling software was used to improve the efficiency of existing immersion freezing equipment. The concept of adding a rotating hopper device was proposed to make pork rotate with the rotating hopper in a flowing refrigerant carrier to achieve the effect of shortening the freezing time. In order to make up for the shortcomings of time-consuming processes and the limited information obtained from the measurement of the central temperature of pork, this paper establishes a mathematical model of the pre-freezing process using computational fluid dynamics (CFD) software to simulate the three-dimensional unsteady state of the pork. The simulation results show that when the rotating hopper is stationary, the refrigerant circulation flow shortens the freezing speed by 490 s compared to the freezing speed in the stationary state of the refrigerant carrier, and the freezing time efficiency is improved by 9.5%. When the refrigerant carrier flow rate v = 0 m/s and when the hopper speed r = 2 rad/s, the central temperature of pork drops rapidly from 26 °C to −15 °C in 0~1250 s, the decline leveled off at 1250–2310 s, and finally dropped to −18 °C, requiring a total of 5410 s. The freezing time of the immersion and freezing equipment was reduced by 2830 s after the addition of the rotating device, improving efficiency by nearly 55%. When the rotation speed r is increased from 2 rad/s to 4 rad/s, the freezing time is shortened by 1290 s and the freezing efficiency is increased by nearly 53%. The addition of the rotating device will make the pork freezing effect more uniform.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Coatings, MDPI AG, Vol. 12, No. 5 ( 2022-04-27), p. 595-
    Abstract: In this paper, WO3 nanowires were successfully synthesized via a one-step water bath method at an appropriate temperature. The XRD (Energy Dispersive Spectrometer), SEM (Scanning electron microscope), TEM (Transmission Electron Microscope) and other characterization methods proved that the synthesized product was WO3, and the product of water bath reaction for 9 h showed the nanowires’ structure. The nanowires were evenly distributed, and the length ranged from 2 μm to 4 μm. The results showed that the nanowires had excellent light transmittance (66%), a very short response time (1.2 s, 2 s) and excellent color rendering efficiency (115.2 cm2 C−1) at 650 nm. The electrochemical performance test showed that the specific capacity of the WO3 nanowires was up to 565 F/g at 1 A/g. Change the different current densities and cycle 100 times, then return to the initial current density, accounting for 99% of the initial specific capacity of 565 F/g. We used this method for the first time to prepare tungsten oxide nanowires and investigated the bifunctional properties of the material, namely the electrochromic and capacitive properties. All of these data indicate that WO3 nanorods have excellent electrochromic and electrochromic properties and have potential market prospects in the fields of electrochromic glass, variable glasses, advertising, and supercapacitors.
    Type of Medium: Online Resource
    ISSN: 2079-6412
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662314-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Coatings, MDPI AG, Vol. 12, No. 7 ( 2022-07-07), p. 963-
    Abstract: Shell is a typical biomineralized inorganic–organic composite material. The essence of scallop deshelling is caused by the fracture failure at the interface of the organic and inorganic–organic matter composites. The constitutive equations were solved so that the stress distributions of the adductor in the radial, circumferential, and axial directions were obtained as σr = σθ = P, σz = 2(2 − ν)P/(2ν − 1), and the shear stress was τzr = 0. Using the method of finite element simulation analysis, the stress distribution laws at different interface states were obtained. The experimental results show that when the amplitude is constant, the undulation period is smaller than the diameter of the adductor or the angle between the bus of the adductor, and the reference horizontal plane gradually decreases, so the interface is more likely to yield. After the analysis, the maximum stress for the yielding of the scallop interface was about 247 MPa, and the whole deshelling process was gradually spread from the outer edge of the interface to the center. The study analyzed the scallop organic–inorganic material interface from the perspective of mechanics, and the mechanical model and simulation analysis results were consistent with the parameter optimization results, which can provide some theoretical basis for the composite material interface failure and in-depth research.
    Type of Medium: Online Resource
    ISSN: 2079-6412
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662314-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Processes, MDPI AG, Vol. 11, No. 2 ( 2023-02-08), p. 521-
    Abstract: Because of their high nutritional value, the demand for scallops is increasing year by year. In the process of improving people’s living standards, the ready-to-eat characteristics and dry sales characteristics of this product make its shelling process particularly important in the production process. However, the mechanism of ultra-high pressure shelling has not yet been clarified. Therefore, in-depth study of the structural change of the scallop connection interface is of vital importance to explore the mechanism of ultra-high pressure shelling and the development of intelligent equipment from the mechanical point of view. The obturator muscle fibers and the inner surface materials of the shell at the obturator muscle scar of the scallop at 100, 200 and 300 MPa were obtained for Raman spectrum, Fourier-transform infrared spectrum and scanning electron microscopy analysis. The results showed that under the pressure of 200 MPa, the degree of protein denaturation of scallop adductor muscle increased, the elasticity disappeared, and the fiber was stretched; The deformation of the organic plasma membrane connected by the inorganic–organic interface weakens the binding force of the interface material and increases the possibility of the composite interface failure. To sum up, ultra-high pressure can effectively weaken the interface adhesion of scallop organic-inorganic composite materials, and is one of the effective ways of shelling. The research results can provide a basis for the in-depth analysis of ultra-high pressure mechanisms and the development of intelligent equipment, and provide technical support for the realization of ultra-high-pressure industrial production.
    Type of Medium: Online Resource
    ISSN: 2227-9717
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2720994-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...