GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cerghet, Mirela  (2)
  • 1
    Online Resource
    Online Resource
    SAGE Publications ; 2003
    In:  Journal of Histochemistry & Cytochemistry Vol. 51, No. 7 ( 2003-07), p. 913-919
    In: Journal of Histochemistry & Cytochemistry, SAGE Publications, Vol. 51, No. 7 ( 2003-07), p. 913-919
    Abstract: Oligodendrocytes, the myelin-forming cells in the central nervous system, were visualized with excellent resolution at the light microscopic level using in situ hybridization (ISH). Digoxigenin (Dig)-tagged probes were synthesized and efficiently labeled by PCR. Specific probes to myelin genes were made by RT from brain total RNAs, followed by PCR with designed specific primers in the presence of Dig-11-dUTP. Probes specific to proteolipid protein (PLP), PLP and its isoform DM20 (PLP/DM20), and myelin oligodendrocyte glycoprotein (MOG) were synthesized and labeled. ISH was then applied on vibratomed tissue sections from mouse brains. Despite a low expression of MOG-specific and PLP-specific mRNAs in adult and newborn mouse brains, an oligodendrocyte population was detected. The specificity of Dig-labeled probes was confirmed with the double labeling of carbonic anhydrase II (CA II) and glial fibrillary acidic protein (GFAP) immunocytochemistry and ISH. This versatile and easy method for synthesis and labeling of specific probes to oligodendrocytes can be also applied to detect many other mRNAs in the nervous system and in other tissues.
    Type of Medium: Online Resource
    ISSN: 0022-1554 , 1551-5044
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2003
    detail.hit.zdb_id: 1421306-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Society for Neuroscience ; 2006
    In:  The Journal of Neuroscience Vol. 26, No. 5 ( 2006-02-01), p. 1439-1447
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 26, No. 5 ( 2006-02-01), p. 1439-1447
    Abstract: Sexual dimorphism of neurons and astrocytes has been demonstrated in different centers of the brain, but sexual dimorphism of oligodendrocytes and myelin has not been examined. We show, using immunocytochemistry and in situ hybridization, that the density of oligodendrocytes in corpus callosum, fornix, and spinal cord is 20–40% greater in males compared with females. These differences are present in young and aged rodents and are independent of strain and species. Proteolipid protein and carbonic anhydrase-II transcripts, measured by real-time PCR, are approximately two to three times greater in males. Myelin basic protein and 2′, 3′-cyclic nucleotide 3′-phosphodiesterase, measured by Western blots, are 20–160% greater in males compared with females. Surprisingly, both generation of new glia and apoptosis of glia, including oligodendrocytes, are approximately two times greater in female corpus callosum. These results indicate that the lifespan of oligodendrocytes is shorter in females than in males. Castration of males produces a female phenotype characterized by fewer oligodendrocytes and increased generation of new glia. These findings indicate that exogenous androgens differentially affect the lifespan of male and female oligodendrocytes, and they can override the endogenous production of neurosteroids. The data imply that turnover of myelin is greater in females than in males. μ-Calpain, a protease upregulated in degeneration of myelin, is dramatically increased at both transcriptional and translational levels in females compared with males. These morphological, molecular, and biochemical data show surprisingly large differences in turnover of oligodendrocytes and myelin between sexes. We discuss the potential significance of these differences to multiple sclerosis, a sexually dimorphic disease, whose progression is altered by exogenous hormones.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2006
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...