GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The American Association of Immunologists  (4)
  • Castro-Faria-Neto, Hugo C.  (4)
  • Vieira-de-Abreu, Adriana  (4)
  • 1
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 179, No. 12 ( 2007-12-15), p. 8500-8508
    Abstract: Lipid bodies (also known as lipid droplets) are emerging as inflammatory organelles with roles in the innate immune response to infections and inflammatory processes. In this study, we identified MCP-1 as a key endogenous mediator of lipid body biogenesis in infection-driven inflammatory disorders and we described the cellular mechanisms and signaling pathways involved in the ability of MCP-1 to regulate the biogenesis and leukotriene B4 (LTB4) synthetic function of lipid bodies. In vivo assays in MCP-1−/− mice revealed that endogenous MCP-1 produced during polymicrobial infection or LPS-driven inflammatory responses has a critical role on the activation of lipid body-assembling machinery, as well as on empowering enzymatically these newly formed lipid bodies with LTB4 synthetic function within macrophages. MCP-1 triggered directly the rapid biogenesis of distinctive LTB4-synthesizing lipid bodies via CCR2-driven ERK- and PI3K-dependent intracellular signaling in in vitro-stimulated macrophages. Disturbance of microtubule organization by microtubule-active drugs demonstrated that MCP-1-induced lipid body biogenesis also signals through a pathway dependent on microtubular dynamics. Besides biogenic process, microtubules control LTB4-synthesizing function of MCP-1-elicited lipid bodies, in part by regulating the compartmentalization of key proteins, as adipose differentiation-related protein and 5-lipoxygenase. Therefore, infection-elicited MCP-1, besides its known CCR2-driven chemotactic function, appears as a key activator of lipid body biogenic and functional machineries, signaling through a microtubule-dependent manner.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2007
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 171, No. 12 ( 2003-12-15), p. 6788-6794
    Abstract: γδ T lymphocytes are involved in a great variety of inflammatory and infectious responses. However, the mechanisms by which γδ T lymphocytes migrate to inflamed sites are poorly understood. In this study we investigate the role of monocyte chemotactic protein (MCP)-1 in regulating γδ T cell migration after LPS or Mycobacterium bovis bacille Calmette-Guérin (BCG) challenge. LPS-induced γδ T cell influx was significantly inhibited by either pretreatment with dexamethasone or vaccinia virus Lister 35-kDa chemokine binding protein, vCKBP, a CC chemokine neutralizing protein, suggesting a role for CC chemokines in this phenomenon. LPS stimulation increased the expression of MCP-1 mRNA and protein at the inflammation site within 6 h. It is noteworthy that LPS was unable to increase MCP-1 production or γδ T cell recruitment in C3H/HeJ, indicative of the involvement of Toll-like receptor 4. γδ T cells express MCP-1 receptor CCR2. Pretreatment with anti-MCP-1 mAb drastically inhibited LPS-induced in vivo γδ T cell mobilization. Indeed, MCP-1 knockout mice were unable to recruit γδ T cells to the pleural cavity after LPS stimulation, effect that could be restored by coadministration of MCP-1. In addition, BCG-induced γδ lymphocyte accumulation was significantly reduced in MCP-1 knockout mice when compared with wild-type mice. In conclusion, our results indicate that LPS-induced γδ T lymphocyte migration is dependent on Toll-like receptor 4 and sensitive to both dexamethasone and CC chemokine-binding protein inhibition. Moreover, by using MCP-1 neutralizing Abs and genetically deficient mice we show that LPS- and BCG-induced γδ T lymphocyte influx to the pleural cavity of mice is mainly orchestrated by the CC chemokine MCP-1.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2003
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 193, No. 4 ( 2014-08-15), p. 1864-1872
    Abstract: Dengue is the most prevalent human arbovirus disease in the world. Dengue infection has a large spectrum of clinical manifestations, from self-limited febrile illness to severe syndromes accompanied by bleeding and shock. Thrombocytopenia and vascular leak with altered cytokine profiles in plasma are features of severe dengue. Although monocytes have been recognized as important sources of cytokines in dengue, the contributions of platelet–monocyte interactions to inflammatory responses in dengue have not been addressed. Patients with dengue were investigated for platelet–monocyte aggregate formation. Platelet-induced cytokine responses by monocytes and underlying mechanisms were also investigated in vitro. We observed increased levels of platelet–monocyte aggregates in blood samples from patients with dengue, especially patients with thrombocytopenia and increased vascular permeability. Moreover, the exposure of monocytes from healthy volunteers to platelets from patients with dengue induced the secretion of the cytokines IL-1β, IL-8, IL-10 and MCP-1, whereas exposure to platelets from healthy volunteers only induced the secretion of MCP-1. In addition to the well-established modulation of monocyte cytokine responses by activated platelets through P-selectin binding, we found that interaction of monocytes with apoptotic platelets mediate IL-10 secretion through phosphatidylserine recognition in platelet–monocyte aggregates. Moreover, IL-10 secretion required platelet–monocyte contact but not phagocytosis. Together, our results demonstrate that activated and apoptotic platelets aggregate with monocytes during dengue infection and signal specific cytokine responses that may contribute to the pathogenesis of dengue.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2014
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 176, No. 3 ( 2006-02-01), p. 1326-1330
    Abstract: In addition to the well-recognized ability of prostaglandin D2 (PGD2) to regulate eosinophil trafficking, we asked whether PGD2 was also able to activate eosinophils and control their leukotriene C4 (LTC4)-synthesizing machinery. PGD2 administration to presensitized mice enhanced in vivo LTC4 production and formation of eosinophil lipid bodies–potential LTC4-synthesizing organelles. Immunolocalization of newly formed LTC4 demonstrated that eosinophil lipid bodies were the sites of LTC4 synthesis during PGD2-induced eosinophilic inflammation. Pretreatment with HQL-79, an inhibitor of PGD synthase, abolished LTC4 synthesis and eosinophil lipid body formation triggered by allergic challenge. Although PGD2 was able to directly activate eosinophils in vitro, in vivo PGD2-induced lipid body-driven LTC4 synthesis within eosinophils was dependent on the synergistic activity of endogenous eotaxin acting via CCR3. Our findings, that PGD2 activated eosinophils and enhanced LTC4 synthesis in vivo in addition to the established PGD2 roles in eosinophil recruitment, heighten the interest in PGD2 as a target for antiallergic therapies.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2006
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...