GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (8)
  • Casey, Graham  (8)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 15 ( 2023-08-01), p. 2572-2583
    Abstract: Colorectal cancer risk can be impacted by genetic, environmental, and lifestyle factors, including diet and obesity. Gene-environment interactions (G × E) can provide biological insights into the effects of obesity on colorectal cancer risk. Here, we assessed potential genome-wide G × E interactions between body mass index (BMI) and common SNPs for colorectal cancer risk using data from 36,415 colorectal cancer cases and 48,451 controls from three international colorectal cancer consortia (CCFR, CORECT, and GECCO). The G × E tests included the conventional logistic regression using multiplicative terms (one degree of freedom, 1DF test), the two-step EDGE method, and the joint 3DF test, each of which is powerful for detecting G × E interactions under specific conditions. BMI was associated with higher colorectal cancer risk. The two-step approach revealed a statistically significant G×BMI interaction located within the Formin 1/Gremlin 1 (FMN1/GREM1) gene region (rs58349661). This SNP was also identified by the 3DF test, with a suggestive statistical significance in the 1DF test. Among participants with the CC genotype of rs58349661, overweight and obesity categories were associated with higher colorectal cancer risk, whereas null associations were observed across BMI categories in those with the TT genotype. Using data from three large international consortia, this study discovered a locus in the FMN1/GREM1 gene region that interacts with BMI on the association with colorectal cancer risk. Further studies should examine the potential mechanisms through which this locus modifies the etiologic link between obesity and colorectal cancer. Significance: This gene-environment interaction analysis revealed a genetic locus in FMN1/GREM1 that interacts with body mass index in colorectal cancer risk, suggesting potential implications for precision prevention strategies.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 31, No. 5 ( 2022-05-04), p. 1077-1089
    Abstract: Currently known associations between common genetic variants and colorectal cancer explain less than half of its heritability of 25%. As alcohol consumption has a J-shape association with colorectal cancer risk, nondrinking and heavy drinking are both risk factors for colorectal cancer. Methods: Individual-level data was pooled from the Colon Cancer Family Registry, Colorectal Transdisciplinary Study, and Genetics and Epidemiology of Colorectal Cancer Consortium to compare nondrinkers (≤1 g/day) and heavy drinkers ( & gt;28 g/day) with light-to-moderate drinkers (1–28 g/day) in GxE analyses. To improve power, we implemented joint 2df and 3df tests and a novel two-step method that modifies the weighted hypothesis testing framework. We prioritized putative causal variants by predicting allelic effects using support vector machine models. Results: For nondrinking as compared with light-to-moderate drinking, the hybrid two-step approach identified 13 significant SNPs with pairwise r2 & gt; 0.9 in the 10q24.2/COX15 region. When stratified by alcohol intake, the A allele of lead SNP rs2300985 has a dose–response increase in risk of colorectal cancer as compared with the G allele in light-to-moderate drinkers [OR for GA genotype = 1.11; 95% confidence interval (CI), 1.06–1.17; OR for AA genotype = 1.22; 95% CI, 1.14–1.31], but not in nondrinkers or heavy drinkers. Among the correlated candidate SNPs in the 10q24.2/COX15 region, rs1318920 was predicted to disrupt an HNF4 transcription factor binding motif. Conclusions: Our study suggests that the association with colorectal cancer in 10q24.2/COX15 observed in genome-wide association study is strongest in nondrinkers. We also identified rs1318920 as the putative causal regulatory variant for the region. Impact: The study identifies multifaceted evidence of a possible functional effect for rs1318920.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 32, No. 3 ( 2023-03-06), p. 315-328
    Abstract: Tobacco smoking is an established risk factor for colorectal cancer. However, genetically defined population subgroups may have increased susceptibility to smoking-related effects on colorectal cancer. Methods: A genome-wide interaction scan was performed including 33,756 colorectal cancer cases and 44,346 controls from three genetic consortia. Results: Evidence of an interaction was observed between smoking status (ever vs. never smokers) and a locus on 3p12.1 (rs9880919, P = 4.58 × 10−8), with higher associated risk in subjects carrying the GG genotype [OR, 1.25; 95% confidence interval (CI), 1.20–1.30] compared with the other genotypes (OR & lt;1.17 for GA and AA). Among ever smokers, we observed interactions between smoking intensity (increase in 10 cigarettes smoked per day) and two loci on 6p21.33 (rs4151657, P = 1.72 × 10−8) and 8q24.23 (rs7005722, P = 2.88 × 10−8). Subjects carrying the rs4151657 TT genotype showed higher risk (OR, 1.12; 95% CI, 1.09–1.16) compared with the other genotypes (OR & lt;1.06 for TC and CC). Similarly, higher risk was observed among subjects carrying the rs7005722 AA genotype (OR, 1.17; 95% CI, 1.07–1.28) compared with the other genotypes (OR & lt;1.13 for AC and CC). Functional annotation revealed that SNPs in 3p12.1 and 6p21.33 loci were located in regulatory regions, and were associated with expression levels of nearby genes. Genetic models predicting gene expression revealed that smoking parameters were associated with lower colorectal cancer risk with higher expression levels of CADM2 (3p12.1) and ATF6B (6p21.33). Conclusions: Our study identified novel genetic loci that may modulate the risk for colorectal cancer of smoking status and intensity, linked to tumor suppression and immune response. Impact: These findings can guide potential prevention treatments.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 30, No. 3 ( 2021-03-01), p. 564-575
    Abstract: Evidence for aspirin's chemopreventative properties on colorectal cancer (CRC) is substantial, but its mechanism of action is not well-understood. We combined a proteomic approach with Mendelian randomization (MR) to identify possible new aspirin targets that decrease CRC risk. Methods: Human colorectal adenoma cells (RG/C2) were treated with aspirin (24 hours) and a stable isotope labeling with amino acids in cell culture (SILAC) based proteomics approach identified altered protein expression. Protein quantitative trait loci (pQTLs) from INTERVAL (N = 3,301) and expression QTLs (eQTLs) from the eQTLGen Consortium (N = 31,684) were used as genetic proxies for protein and mRNA expression levels. Two-sample MR of mRNA/protein expression on CRC risk was performed using eQTL/pQTL data combined with CRC genetic summary data from the Colon Cancer Family Registry (CCFR), Colorectal Transdisciplinary (CORECT), Genetics and Epidemiology of Colorectal Cancer (GECCO) consortia and UK Biobank (55,168 cases and 65,160 controls). Results: Altered expression was detected for 125/5886 proteins. Of these, aspirin decreased MCM6, RRM2, and ARFIP2 expression, and MR analysis showed that a standard deviation increase in mRNA/protein expression was associated with increased CRC risk (OR: 1.08, 95% CI, 1.03–1.13; OR: 3.33, 95% CI, 2.46–4.50; and OR: 1.15, 95% CI, 1.02–1.29, respectively). Conclusions: MCM6 and RRM2 are involved in DNA repair whereby reduced expression may lead to increased DNA aberrations and ultimately cancer cell death, whereas ARFIP2 is involved in actin cytoskeletal regulation, indicating a possible role in aspirin's reduction of metastasis. Impact: Our approach has shown how laboratory experiments and population-based approaches can combine to identify aspirin-targeted proteins possibly affecting CRC risk.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 26, No. 1 ( 2017-01-01), p. 126-135
    Abstract: Background: Common cancers develop through a multistep process often including inherited susceptibility. Collaboration among multiple institutions, and funding from multiple sources, has allowed the development of an inexpensive genotyping microarray, the OncoArray. The array includes a genome-wide backbone, comprising 230,000 SNPs tagging most common genetic variants, together with dense mapping of known susceptibility regions, rare variants from sequencing experiments, pharmacogenetic markers, and cancer-related traits. Methods: The OncoArray can be genotyped using a novel technology developed by Illumina to facilitate efficient genotyping. The consortium developed standard approaches for selecting SNPs for study, for quality control of markers, and for ancestry analysis. The array was genotyped at selected sites and with prespecified replicate samples to permit evaluation of genotyping accuracy among centers and by ethnic background. Results: The OncoArray consortium genotyped 447,705 samples. A total of 494,763 SNPs passed quality control steps with a sample success rate of 97% of the samples. Participating sites performed ancestry analysis using a common set of markers and a scoring algorithm based on principal components analysis. Conclusions: Results from these analyses will enable researchers to identify new susceptibility loci, perform fine-mapping of new or known loci associated with either single or multiple cancers, assess the degree of overlap in cancer causation and pleiotropic effects of loci that have been identified for disease-specific risk, and jointly model genetic, environmental, and lifestyle-related exposures. Impact: Ongoing analyses will shed light on etiology and risk assessment for many types of cancer. Cancer Epidemiol Biomarkers Prev; 26(1); 126–35. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 25, No. 12 ( 2016-12-01), p. 1609-1618
    Abstract: Background: Genome-wide association studies (GWAS) in European populations have identified genetic risk variants associated with multiple myeloma. Methods: We performed association testing of common variation in eight regions in 1,318 patients with multiple myeloma and 1,480 controls of European ancestry and 1,305 patients with multiple myeloma and 7,078 controls of African ancestry and conducted a meta-analysis to localize the signals, with epigenetic annotation used to predict functionality. Results: We found that variants in 7p15.3, 17p11.2, 22q13.1 were statistically significantly (P & lt; 0.05) associated with multiple myeloma risk in persons of African ancestry and persons of European ancestry, and the variant in 3p22.1 was associated in European ancestry only. In a combined African ancestry–European ancestry meta-analysis, variation in five regions (2p23.3, 3p22.1, 7p15.3, 17p11.2, 22q13.1) was statistically significantly associated with multiple myeloma risk. In 3p22.1, the correlated variants clustered within the gene body of ULK4. Correlated variants in 7p15.3 clustered around an enhancer at the 3′ end of the CDCA7L transcription termination site. A missense variant at 17p11.2 (rs34562254, Pro251Leu, OR, 1.32; P = 2.93 × 10−7) in TNFRSF13B encodes a lymphocyte-specific protein in the TNF receptor family that interacts with the NF-κB pathway. SNPs correlated with the index signal in 22q13.1 cluster around the promoter and enhancer regions of CBX7. Conclusions: We found that reported multiple myeloma susceptibility regions contain risk variants important across populations, supporting the use of multiple racial/ethnic groups with different underlying genetic architecture to enhance the localization and identification of putatively functional alleles. Impact: A subset of reported risk loci for multiple myeloma has consistent effects across populations and is likely to be functional. Cancer Epidemiol Biomarkers Prev; 25(12); 1609–18. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 3517-3517
    Abstract: Germline variation at 8q24 is the strongest risk factor for prostate cancer (PCa) across all racial and ethnic populations. While most 8q24 associations have been observed across populations, rs72725854 [T risk allele frequency ~6%] is only found in men of African ancestry and is the strongest known genome-wide association signal for PCa in this population. We investigated whether the T allele of rs72725854 is associated with PCa family history and age at diagnosis, characteristics known to have a strong genetic component. Analyses were performed using a sample of 9,052 cases and 8,595 controls from the African Ancestry Prostate Cancer (AAPC) GWAS Consortium and the ELLIPSE/PRACTICAL OncoArray Consortium. Participants were unselected for PCa family history. Among cases, 23.7% carried at least one copy of the T allele versus 11.6% of controls. The OR was 2.29 (95% CI=2.10–2.49) for TA heterozygotes and 5.04 (95% CI=3.36–7.55) for TT homozygotes. The percentage of cases carrying the T allele was significantly greater for men with a PCa family history (27.4% vs. 22.7% without a family history, p=0.002) and for men diagnosed & lt;60 (28.2% vs. 21.6% if over ≥60, p=0.002). The mean age at diagnosis for men with the TT genotype was 61.1 years (sd=8.7), compared to 62.7 (sd=9.1) for TA heterozygotes and 64.3 (sd=8.9) for AA homozygotes (p=5.7E-14). Carrier frequency was highest among men with both a positive family history and an early diagnosis (30.8%). The T allele was also over-represented in cases with more advanced PCa, with carrier frequencies ranging from 26% for lethal PCa (metastatic disease, PSA & gt;100 ng/ml or death from PCa), 25.4% for high-risk disease (stage T3/T4, Gleason 8-10, or PSA=20-100 ng/ml), 24.6% for intermediate-risk disease (Gleason=7, stage T1/T2, and PSA=10-20 ng/ml), and 21.4% for low-risk disease (Gleason & lt;7, stage T1/T2, and PSA & lt;10 ng/ml) (p=0.026). We also examined whether the risk allele is over-represented in 144 men from PCa families, with multiple first- and/or second-degree relatives with PCa or men diagnosed with PCa ≤55 years old. Among affected probands, 32.7% carried the risk allele, with 3.5% being homozygous carriers. The OR for TA heterozygotes and TT homozygotes was 3.41 (95% CI=2.33–4.98) and 11.06 (95% CI=3.92–31.18), respectively. Among men without a family history, the absolute risk for PCa by age 60 for non-risk allele carriers was 4.3%, compared to 9.0% and 15.6% for TA heterozygotes and TT homozygotes, respectively. Absolute risks by age 60 were higher among men with a family history of prostate cancer, reaching 9.0% for non-risk allele carriers, compared to 20.8% and 37.7% for TA heterozygotes and TT homozygotes, respectively. Given the high PCa risk conveyed by rs72725854 and the greater frequency of the allele in men with more aggressive and lethal disease, carriers of the risk allele would benefit from earlier and more regular PSA screening. Citation Format: Burcu F. Darst, Jeannette T. Bensen, Sue A. Ingles, Benjamin A. Rybicki, Barbara Nemesure, Esther M. John, Jay H. Fowke, Victoria L. Stevens, Sonja I. Berndt, Chad D. Huff, Jong Y. Park, Wei Zheng, Elaine A. Ostrander, Shiv Srivastava, John Carpten, Thomas A. Sellers, Maureen Sanderson, Dana C. Crawford, Olivier Cussenot, Jennifer Cullen, Rick A. Kittles, Jianfeng Xu, Zsofia Kote-Jarai, Luc Multigner, Marie-Elise Parent, Florence Menegaux, Geraldine Cancel-Tassin, Adam S. Kibel, Eric A. Klein, Phyllis J. Goodman, Jennifer J. Hu, Graham Casey, Anselm J. Hennis, Ian M. Thompson, Robin Leach, James L. Mohler, Elizabeth T. Fontham, Gary J. Smith, Jack A. Taylor, Rosalind A. Eeles, Laurent Brureau, Stephen J. Chanock, Stephen Watya, Janet L. Stanford, Diptasri Mandal, William B. Isaacs, Kathleen A. Cooney, William J. Blot, David V. Conti, Christopher A. Haiman. A germline variant at 8q24 contributes to familial clustering of prostate cancer in men of African ancestry [abstract] . In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 3517.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 23, No. 9 ( 2014-09-01), p. 1824-1833
    Abstract: Background: Genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) that are associated with risk of colorectal cancer. Prior research has evaluated the presence of gene–environment interaction involving the first 10 identified susceptibility loci, but little work has been conducted on interaction involving SNPs at recently identified susceptibility loci, including: rs10911251, rs6691170, rs6687758, rs11903757, rs10936599, rs647161, rs1321311, rs719725, rs1665650, rs3824999, rs7136702, rs11169552, rs59336, rs3217810, rs4925386, and rs2423279. Methods: Data on 9,160 cases and 9,280 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) and Colon Cancer Family Registry (CCFR) were used to evaluate the presence of interaction involving the above-listed SNPs and sex, body mass index (BMI), alcohol consumption, smoking, aspirin use, postmenopausal hormone (PMH) use, as well as intake of dietary calcium, dietary fiber, dietary folate, red meat, processed meat, fruit, and vegetables. Interaction was evaluated using a fixed effects meta-analysis of an efficient Empirical Bayes estimator, and permutation was used to account for multiple comparisons. Results: None of the permutation-adjusted P values reached statistical significance. Conclusions: The associations between recently identified genetic susceptibility loci and colorectal cancer are not strongly modified by sex, BMI, alcohol, smoking, aspirin, PMH use, and various dietary factors. Impact: Results suggest no evidence of strong gene–environment interactions involving the recently identified 16 susceptibility loci for colorectal cancer taken one at a time. Cancer Epidemiol Biomarkers Prev; 23(9); 1824–33. ©2014 AACR.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...