GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Casella, Laura  (7)
  • Jansen, Florian  (7)
  • 1
    In: Diversity and Distributions, Wiley, Vol. 23, No. 9 ( 2017-09), p. 969-981
    Abstract: Woodlands make up a third of European territory and carry out important ecosystem functions, yet a comprehensive overview of their invasion by alien plants has never been undertaken across this continent. Location Europe. Methods We extracted data from 251,740 vegetation plots stored in the recently compiled European Vegetation Archive. After filtering (resulting in 83,396 plots; 39 regions; 1970–2015 time period), we analysed the species pool and frequency of alien vascular plants with respect to geographic origin and life‐forms, and the levels of invasion across the European Nature Information System ( EUNIS ) woodland habitats. Results We found a total of 386 alien plant species (comprising 7% of all recorded vascular plants). Aliens originating from outside of and from within Europe were almost equally represented in the species pool (192 vs. 181 species) but relative frequency was skewed towards the former group (77% vs. 22%) due, to some extent, to the frequent occurrence of Impatiens parviflora (21% frequency among alien plants). Phanerophytes were the most species‐rich life‐form (148 species) and had the highest representation in terms of relative frequency (39%) among aliens in the dataset. Apart from Europe (181 species), North America was the most important source of alien plants (109 species). At the local scale, temperate and boreal softwood riparian woodland (5%) and mire and mountain coniferous woodland ( 〈 1%) had the highest and lowest mean relative alien species richness (percentage of alien species per plot), respectively. Main conclusions Our results indicate that European woodlands are prone to alien plant invasions especially when exposed to disturbance, fragmentation, alien propagule pressure and high soil nutrient levels. Given the persistence of these factors in the landscape, competitive alien plant species with a broad niche, including alien trees and shrubs, are likely to persist and spread further into European woodlands.
    Type of Medium: Online Resource
    ISSN: 1366-9516 , 1472-4642
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2020139-4
    detail.hit.zdb_id: 1443181-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Global Ecology and Biogeography, Wiley, Vol. 30, No. 9 ( 2021-09), p. 1740-1764
    Abstract: Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co‐occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called ‘sPlot’, compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open‐access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local‐to‐regional datasets to openly release data. We thus present sPlotOpen, the largest open‐access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained Vegetation plots ( n  = 95,104) recording cover or abundance of naturally co‐occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets ( c . 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot‐level data also include community‐weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain Global, 0.01–40,000 m². Time period and grain 1888–2015, recording dates. Major taxa and level of measurement 42,677 vascular plant taxa, plot‐level records. Software format Three main matrices (.csv), relationally linked.
    Type of Medium: Online Resource
    ISSN: 1466-822X , 1466-8238
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1479787-2
    detail.hit.zdb_id: 2021283-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Applied Vegetation Science, Wiley, Vol. 19, No. 1 ( 2016-01), p. 173-180
    Abstract: The European Vegetation Archive ( EVA ) is a centralized database of European vegetation plots developed by the IAVS Working Group European Vegetation Survey. It has been in development since 2012 and first made available for use in research projects in 2014. It stores copies of national and regional vegetation‐ plot databases on a single software platform. Data storage in EVA does not affect on‐going independent development of the contributing databases, which remain the property of the data contributors. EVA uses a prototype of the database management software TURBOVEG 3 developed for joint management of multiple databases that use different species lists. This is facilitated by the SynBioSys Taxon Database, a system of taxon names and concepts used in the individual European databases and their corresponding names on a unified list of European flora. TURBOVEG 3 also includes procedures for handling data requests, selections and provisions according to the approved EVA Data Property and Governance Rules. By 30 June 2015, 61 databases from all European regions have joined EVA , contributing in total 1 027 376 vegetation plots, 82% of them with geographic coordinates, from 57 countries. EVA provides a unique data source for large‐scale analyses of European vegetation diversity both for fundamental research and nature conservation applications. Updated information on EVA is available online at http://euroveg.org/eva-database .
    Type of Medium: Online Resource
    ISSN: 1402-2001 , 1654-109X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 2053083-3
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Applied Vegetation Science, Wiley, Vol. 20, No. 3 ( 2017-07), p. 494-512
    Abstract: What are the main floristic patterns in European beech forests? Which classification at the alliance and suballiance level is the most convincing? Location Europe and Asia Minor. Methods We applied a TWINSPAN classification to a data set of 24 605 relevés covering the whole range of Fagus sylvatica forests and the western part of Fagus orientalis forests. We identified 24 ‘operational phytosociological units’ (OPUs), which were used for further analysis. The position of each OPU along the soil pH and temperature gradient was evaluated using Ellenberg Indicator Values. Fidelity of species to OPUs was calculated using the phi coefficient and constancy ratio. We compared alternative alliance concepts, corresponding to groups of OPUs, in terms of number and frequency of diagnostic species. We also established formal definitions for the various alliance concepts based on comparison of the total cover of the diagnostic species groups, and evaluated alternative geographical subdivisions of beech forests. Results The first and second division levels of TWINSPAN followed the temperature and soil pH gradients, while lower divisions were mainly geographical. We grouped the 22 OPUs of Fagus sylvatica forests into acidophytic, meso‐basiphytic and thermo‐basiphytic beech forests, and separated two OPUs of F. orientalis forests. However, a solution with only two ecologically defined alliances of F. sylvatica forests (acidophytic vs basiphytic) was clearly superior with regard to number and frequency of diagnostic species. In contrast, when comparing groupings with three to six geographical alliances of basiphytic beech forests, respectively, we did not find a strongly superior solution. Conclusions We propose to classify F. sylvatica forests into 15 suballiances – three acidophytic and 12 basiphytic ones. Separating these two groups at alliance or order level was clearly supported by our results. Concerning the grouping of the 12 basiphytic suballiances into ecological or geographical alliances, as advocated by many authors, we failed to find an optimal solution. Therefore, we propose a multi‐dimensional classification of basiphytic beech forests, including both ecological and geographical groups as equally valid concepts which may be used alternatively depending on the purpose and context of the classification.
    Type of Medium: Online Resource
    ISSN: 1402-2001 , 1654-109X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2053083-3
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Vegetation Science, Wiley, Vol. 30, No. 2 ( 2019-03), p. 161-186
    Abstract: Vegetation‐plot records provide information on the presence and cover or abundance of plants co‐occurring in the same community. Vegetation‐plot data are spread across research groups, environmental agencies and biodiversity research centers and, thus, are rarely accessible at continental or global scales. Here we present the sPlot database, which collates vegetation plots worldwide to allow for the exploration of global patterns in taxonomic, functional and phylogenetic diversity at the plant community level. Results sPlot version 2.1 contains records from 1,121,244 vegetation plots, which comprise 23,586,216 records of plant species and their relative cover or abundance in plots collected worldwide between 1885 and 2015. We complemented the information for each plot by retrieving climate and soil conditions and the biogeographic context (e.g., biomes) from external sources, and by calculating community‐weighted means and variances of traits using gap‐filled data from the global plant trait database TRY. Moreover, we created a phylogenetic tree for 50,167 out of the 54,519 species identified in the plots. We present the first maps of global patterns of community richness and community‐weighted means of key traits. Conclusions The availability of vegetation plot data in sPlot offers new avenues for vegetation analysis at the global scale.
    Type of Medium: Online Resource
    ISSN: 1100-9233 , 1654-1103
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2047714-4
    detail.hit.zdb_id: 1053769-7
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Applied Vegetation Science, Wiley, Vol. 23, No. 4 ( 2020-10), p. 648-675
    Abstract: The EUNIS Habitat Classification is a widely used reference framework for European habitat types (habitats), but it lacks formal definitions of individual habitats that would enable their unequivocal identification. Our goal was to develop a tool for assigning vegetation‐plot records to the habitats of the EUNIS system, use it to classify a European vegetation‐plot database, and compile statistically‐derived characteristic species combinations and distribution maps for these habitats. Location Europe. Methods We developed the classification expert system EUNIS‐ESy, which contains definitions of individual EUNIS habitats based on their species composition and geographic location. Each habitat was formally defined as a formula in a computer language combining algebraic and set‐theoretic concepts with formal logical operators. We applied this expert system to classify 1,261,373 vegetation plots from the European Vegetation Archive (EVA) and other databases. Then we determined diagnostic, constant and dominant species for each habitat by calculating species‐to‐habitat fidelity and constancy (occurrence frequency) in the classified data set. Finally, we mapped the plot locations for each habitat. Results Formal definitions were developed for 199 habitats at Level 3 of the EUNIS hierarchy, including 25 coastal, 18 wetland, 55 grassland, 43 shrubland, 46 forest and 12 man‐made habitats. The expert system classified 1,125,121 vegetation plots to these habitat groups and 73,188 to other habitats, while 63,064 plots remained unclassified or were classified to more than one habitat. Data on each habitat were summarized in factsheets containing habitat description, distribution map, corresponding syntaxa and characteristic species combination. Conclusions EUNIS habitats were characterized for the first time in terms of their species composition and distribution, based on a classification of a European database of vegetation plots using the newly developed electronic expert system EUNIS‐ESy. The data provided and the expert system have considerable potential for future use in European nature conservation planning, monitoring and assessment.
    Type of Medium: Online Resource
    ISSN: 1402-2001 , 1654-109X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2053083-3
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Global Ecology and Biogeography, Wiley, Vol. 30, No. 7 ( 2021-07), p. 1514-1531
    Abstract: The number of naturalized (i.e. established) alien species has increased rapidly over recent centuries. Given the differences in environmental tolerances among species, little is known about what factors determine the extent to which the observed size of the naturalized range of a species and hence the extent to which the observed richness of naturalized species of a region approach their full potential. Here, we asked which region‐ and species‐specific characteristics explain differences between observed and expected naturalizations. Location Global. Time period Present. Major taxa studied Vascular plants. Methods We determined the observed naturalized distribution outside Europe for 1,485 species endemic to Europe using the Global Naturalized Alien Flora (GloNAF) database and their expected distributions outside Europe using species distribution models. First, we investigated which of seven socio‐economic factors related to introduction pathways, anthropogenic pressures and inventory effort best explained the differences between observed and expected naturalized European floras. Second, we examined whether distributional features, economic use and functional traits explain the extent to which species have filled their expected ranges outside Europe. Results In terms of suitable area, more than 95% of expected naturalizations of European plants were not yet observed. Species were naturalized in only 4.2% of their suitable regions outside of Europe (range filling) and in 0.4% of their unsuitable regions (range expansion). Anthropogenic habitat disturbance primarily explained the difference between observed and expected naturalized European floras, as did the number of treaties relevant to invasive species. Species of ornamental and economic value and with large specific leaf area performed better at filling and expanding beyond their expected range. Main conclusions The naturalization of alien plant species is explained by climate matching but also by the regional level of human development, the introduction pressure associated with the ornamental and economic values of the species and their adaptation to disturbed environments.
    Type of Medium: Online Resource
    ISSN: 1466-822X , 1466-8238
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1479787-2
    detail.hit.zdb_id: 2021283-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...