GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cao, Yong  (1)
  • 2015-2019  (1)
Material
Person/Organisation
Language
Years
  • 2015-2019  (1)
Year
  • 1
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2019
    In:  Journal of the American Heart Association Vol. 8, No. 12 ( 2019-06-18)
    In: Journal of the American Heart Association, Ovid Technologies (Wolters Kluwer Health), Vol. 8, No. 12 ( 2019-06-18)
    Abstract: The blood flow rate of brain arteriovenous malformations ( bAVM s) is an important clinical characteristic closely associated with the hemorrhage risk and radiosurgery obliteration rate of bAVM s. However, the underlying molecular properties remain unclear. To identify potential key molecules, signaling pathways, and vascular cell types involved, we compared gene expression profiles between bAVM s with high flow rates and low flow rates ( LFR ) and validated the functions of selected key molecules in vitro. Methods and Results We performed RNA ‐sequencing analysis on 51 samples, including 14 high flow rate bAVM s and 37 LFR bAVM s. Functional pathway analysis was performed to identify potential signals influencing the flow rate phenotype of bAVM s. Candidate genes were investigated in bAVM specimens by immunohistochemical staining. Migration, tube formation, and proliferation assays were used to test the effects of candidate genes on the phenotypic properties of cultured human umbilical vein endothelial cells and human brain vascular smooth muscle cells. We identified 250 upregulated and 118 downregulated genes in LFR bAVM s compared with high flow rate bAVM s. Wnt signaling was activated in the LFR group via upregulation of FZD 10 and MYOC . Immunohistochemical staining showed that vascular endothelial and smooth muscle cells of LFR bAVM s exhibited increased FZD 10 and MYOC expression. Experimentally elevating these genes promoted human umbilical vein endothelial cells and migration and tube formation by activating canonical Wnt signaling in vitro. Conclusions Our results suggest that canonical Wnt signaling mediated by FZD 10 and MYOC is activated in vascular endothelial and smooth muscle cells in LFR bAVM s.
    Type of Medium: Online Resource
    ISSN: 2047-9980
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2019
    detail.hit.zdb_id: 2653953-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...