GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Cambridge University Press (CUP)  (1)
  • Campbell, Davina  (1)
Materialart
Verlag/Herausgeber
  • Cambridge University Press (CUP)  (1)
Sprache
Erscheinungszeitraum
  • 1
    In: Infection Control & Hospital Epidemiology, Cambridge University Press (CUP), Vol. 41, No. S1 ( 2020-10), p. s330-s330
    Kurzfassung: Background: The capacity to monitor the emergence of carbapenemase-producing organisms (CPO) is critical in limiting transmission. CPO-colonized patients can be identified by screening rectal specimens for carbapenemase genes and the Cepheid GeneXpert Carba-R (XCR), the only FDA-approved test, is limited to 5 carbapenemase genes and cannot identify the bacterial species. Objective: We describe the development and validation of culture-based methods for the detection of CPO in rectal cultures (RCs) and nonrectal cultures (NRCs) of tracheal aspirate and axilla-groin swabs. Methods: Colonization screening was performed at 3 US healthcare facilities; specimens of RC swabs and NRC ESwabs were collected. Each specimen was inoculated to a MacConkey broth enrichment tube for overnight incubation then were subcultured to MacConkey agar with meropenem and ertapenem 10 µg disks (BEMA) and CHROMagar KPC (KCHR) or CHROMagar Acinetobacter (ACHR). All media were evaluated for the presence of carbapenem-resistant organisms; suspect colonies were screened by real-time PCR for the most common carbapenemase genes. MALDI-TOF was performed for species identification. BEMA, a previously validated method, was the comparator for 52 RCs; clinical culture (CC) served as the comparator method for 66 NRCs. Select CPO-positive and -negative specimens underwent reproducibility testing. Results: Among 56 patients undergoing colonization screening, 12 (21%) carried a CPO. Only 1 patient had CPO solely from RC. Also, 6 patients had both CPO-positive RC and NRC, and 5 patients only had a CPO-positive NRC. Of the latter, 4 had a CPO-positive tracheal specimen, and 1 had a positive culture from both tracheal and axilla-groin specimens. Sensitivity of BEMA (70%) for NRC was lower than for KCHR (96%) and ACHR (88 %) for all specimens. All methods showed a specificity of 100% and reproducibility of 92%. The detected CPO included OXA-23–positive Acinetobacter baumannii , NDM-positive Escherichia coli , KPC-positive Pseudomonas aeruginosa and 4 genera of KPC-positive Enterobacteriaceae. Conclusions: The addition of nonrectal specimens and use of selective media contributed to increased sensitivity and enhanced identification of CPO-colonized patients. Positive cultures were equally distributed among the 3 specimen types. The addition of the nonrectal specimens resulted in the identification of more colonized patients. The culture-based method was successful in detecting an array of different CPOs and target genes, including genes not detected by the Carba-R assay (eg, blaOXA-23-like). Enhanced isolation and characterization of CPOs will be key in aiding epidemiologic investigations and strengthening targeted guidance for containment strategies. Funding: None Disclosures: We discuss the drug combination aztreonam-avibactam and acknowledge that this drug combination is not currently FDA approved.
    Materialart: Online-Ressource
    ISSN: 0899-823X , 1559-6834
    Sprache: Englisch
    Verlag: Cambridge University Press (CUP)
    Publikationsdatum: 2020
    ZDB Id: 2106319-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...