GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Open Forum Infectious Diseases, Oxford University Press (OUP), Vol. 4, No. suppl_1 ( 2017), p. S179-S179
    Type of Medium: Online Resource
    ISSN: 2328-8957
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2017
    detail.hit.zdb_id: 2757767-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Infection Control & Hospital Epidemiology, Cambridge University Press (CUP), Vol. 41, No. S1 ( 2020-10), p. s330-s330
    Abstract: Background: The capacity to monitor the emergence of carbapenemase-producing organisms (CPO) is critical in limiting transmission. CPO-colonized patients can be identified by screening rectal specimens for carbapenemase genes and the Cepheid GeneXpert Carba-R (XCR), the only FDA-approved test, is limited to 5 carbapenemase genes and cannot identify the bacterial species. Objective: We describe the development and validation of culture-based methods for the detection of CPO in rectal cultures (RCs) and nonrectal cultures (NRCs) of tracheal aspirate and axilla-groin swabs. Methods: Colonization screening was performed at 3 US healthcare facilities; specimens of RC swabs and NRC ESwabs were collected. Each specimen was inoculated to a MacConkey broth enrichment tube for overnight incubation then were subcultured to MacConkey agar with meropenem and ertapenem 10 µg disks (BEMA) and CHROMagar KPC (KCHR) or CHROMagar Acinetobacter (ACHR). All media were evaluated for the presence of carbapenem-resistant organisms; suspect colonies were screened by real-time PCR for the most common carbapenemase genes. MALDI-TOF was performed for species identification. BEMA, a previously validated method, was the comparator for 52 RCs; clinical culture (CC) served as the comparator method for 66 NRCs. Select CPO-positive and -negative specimens underwent reproducibility testing. Results: Among 56 patients undergoing colonization screening, 12 (21%) carried a CPO. Only 1 patient had CPO solely from RC. Also, 6 patients had both CPO-positive RC and NRC, and 5 patients only had a CPO-positive NRC. Of the latter, 4 had a CPO-positive tracheal specimen, and 1 had a positive culture from both tracheal and axilla-groin specimens. Sensitivity of BEMA (70%) for NRC was lower than for KCHR (96%) and ACHR (88 %) for all specimens. All methods showed a specificity of 100% and reproducibility of 92%. The detected CPO included OXA-23–positive Acinetobacter baumannii , NDM-positive Escherichia coli , KPC-positive Pseudomonas aeruginosa and 4 genera of KPC-positive Enterobacteriaceae. Conclusions: The addition of nonrectal specimens and use of selective media contributed to increased sensitivity and enhanced identification of CPO-colonized patients. Positive cultures were equally distributed among the 3 specimen types. The addition of the nonrectal specimens resulted in the identification of more colonized patients. The culture-based method was successful in detecting an array of different CPOs and target genes, including genes not detected by the Carba-R assay (eg, blaOXA-23-like). Enhanced isolation and characterization of CPOs will be key in aiding epidemiologic investigations and strengthening targeted guidance for containment strategies. Funding: None Disclosures: We discuss the drug combination aztreonam-avibactam and acknowledge that this drug combination is not currently FDA approved.
    Type of Medium: Online Resource
    ISSN: 0899-823X , 1559-6834
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2106319-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 64, No. 9 ( 2020-08-20)
    Abstract: The treatment of infections caused by carbapenem-resistant Enterobacterales , especially New Delhi metallo-β-lactamase (NDM)-producing bacteria, is challenging. Although less common in the United States than some other carbapenemase producers, NDM-producing bacteria are a public health threat due to the limited treatment options available. Here, we report on the antibiotic susceptibility of 275 contemporary NDM-producing Enterobacterales collected from 30 U.S. states through the Centers for Disease Control and Prevention’s Antibiotic Resistance Laboratory Network. The aims of the study were to determine the susceptibility of these isolates to 32 currently available antibiotics using reference broth microdilution and to explore the in vitro activity of 3 combination agents that are not yet available. Categorical interpretations were determined using Clinical and Laboratory Standards Institute (CLSI) interpretive criteria. For agents without CLSI criteria, Food and Drug Administration (FDA) interpretive criteria were used. The percentage of susceptible isolates did not exceed 90% for any of the FDA-approved antibiotics tested. The antibiotics with breakpoints that had the highest in vitro activity were tigecycline (86.5% susceptible), eravacycline (66.2% susceptible), and omadacycline (59.6% susceptible); 18.2% of isolates were susceptible to aztreonam. All NDM-producing isolates tested were multidrug resistant, and 116 isolates were extensively drug resistant (42.2%); 207 (75.3%) isolates displayed difficult-to-treat resistance. The difficulty in treating infections caused by NDM-producing Enterobacterales highlights the need for containment and prevention efforts to keep these infections from becoming more common.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2020
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...