GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (2)
  • Calley, John  (2)
  • 1
    In: Developmental Dynamics, Wiley, Vol. 226, No. 2 ( 2003-02), p. 398-409
    Abstract: Suppression polymerase chain reaction–based subtractive hybridization was used to identify genes that are expressed during Xenopus laevis hindlimb regeneration. Subtractions were done by using RNAs extracted from the regeneration‐competent stage (stage 53) and regeneration‐incompetent stage (stage 59) of limb development. Forward and reverse subtractions were done between stage 53 7‐day blastema and stage 53 contralateral limb (competent stage), stage 59 7‐day pseudoblastema and stage 59 contralateral limb (incompetent stage), and stage 53 7‐day blastema and stage 59 7‐day pseudoblastema. Several thousand clones were analyzed from the various subtracted libraries, either by random selection and sequencing (1,920) or by screening subtracted cDNA clones (6,150), arrayed on nylon membranes, with tissue‐specific probes. Several hundred clones were identified from the array screens whose expression levels were at least twofold higher in experimental tissue vs. control tissue (e.g., blastema vs. limb) and selected for sequencing. In addition, primers were designed to assay several of the randomly selected clones and used to assess the level of expression of these genes during regeneration and normal limb development. Approximately half of the selected clones were differentially expressed, as expected, including several that demonstrate blastema‐specific enhancement of expression. Three distinct categories of expression were identified in our screens: (1) clones that are expressed in both regeneration‐competent blastemas and ‐incompetent pseudoblastemas, (2) clones that are expressed at highest levels in regeneration‐competent blastemas, and (3) clones that are expressed at highest levels in regeneration‐incompetent pseudoblastemas. Characterizing the role of each of these three categories of genes will be important in furthering our understanding of the process of tissue regeneration. Developmental Dynamics 226:398–409, 2003. © 2003 Wiley‐Liss, Inc.
    Type of Medium: Online Resource
    ISSN: 1058-8388 , 1097-0177
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2003
    detail.hit.zdb_id: 1473797-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiley ; 2005
    In:  Developmental Dynamics Vol. 233, No. 2 ( 2005-06), p. 356-367
    In: Developmental Dynamics, Wiley, Vol. 233, No. 2 ( 2005-06), p. 356-367
    Abstract: The multi‐C2H2 zinc‐finger domain containing transcriptional regulators of the spalt ( SAL ) family plays important developmental regulatory roles. In a competitive subtractive hybridization screen of genes expressed in Xenopus laevis hindlimb regeneration blastemas, we identified a SAL family member that, by phylogenetic analysis, falls in the same clade as human SALL4 and have designated it as XlSALL4 . Mutations of human SALL4 have been linked to Okihiro syndrome, which includes preaxial (anterior) limb defects. The expression pattern of XlSALL4 transcripts during normal forelimb and hindlimb development and during hindlimb regeneration at the regeneration‐competent and regeneration‐incompetent stages is temporally and regionally dynamic. We show for the first time that a SAL family member ( XlSALL4 ) is expressed at the right place and time to play a role regulating both digit identity along the anterior/posterior axis and epimorphic limb regeneration. Developmental Dynamics 233:356–367, 2005. © 2005 Wiley‐Liss, Inc.
    Type of Medium: Online Resource
    ISSN: 1058-8388 , 1097-0177
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2005
    detail.hit.zdb_id: 1473797-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...