GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media SA  (2)
  • Cai, Sanjun  (2)
  • Zhang, Long  (2)
Material
Publisher
  • Frontiers Media SA  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Cell and Developmental Biology Vol. 9 ( 2021-6-15)
    In: Frontiers in Cell and Developmental Biology, Frontiers Media SA, Vol. 9 ( 2021-6-15)
    Abstract: Lymph node metastasis (LNM) is closely related to the postoperative recurrence of colorectal cancer (CRC), and greatly affects patient survival. Conducting Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA), we found that the epithelial-mesenchymal transition (EMT) signaling pathway is the signaling pathway most relevant to the process of LNM. An EMT-related gene signature was identified from a discovery dataset obtained 489 patients using LIMMA and LASSO Cox methods. Six external independent dataset analyses including a total of 1,045 CRC patients and stratification analysis showed that EMT-related gene signature could sort out those high- and low-risk CRC patients accurately. Functional analysis and loss-of-function exploration in vitro and in vivo indicated that the EMT-related-signature-associated coding genes might play functional roles in the sophisticated regulation of CRC proliferation and metastasis. Prognostic nomograms integrating the EMT-related gene signature and clinicopathological risk factors were constructed for use as numerical prediction tools to assess clinical prognosis and clinical decision-makings. The comprehensive transcriptomic analysis in this article highlights the prognostic value of an EMT-related gene signature for postoperative disease recurrence in CRC patients and reveals a potential prognostic and therapeutic biomarker for CRC.
    Type of Medium: Online Resource
    ISSN: 2296-634X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2737824-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Bioengineering and Biotechnology Vol. 11 ( 2023-5-22)
    In: Frontiers in Bioengineering and Biotechnology, Frontiers Media SA, Vol. 11 ( 2023-5-22)
    Abstract: Introduction: Most advanced colorectal cancers are aggressive, and there is a lack of effective methods for selecting appropriate anticancer regimens. Patient-derived organoids (PDOs) have emerged as preclinical platforms for modeling clinical responses to cancer therapy. Methods: In this study, we successfully constructed a living biobank with 42 organoids derived from primary and metastatic lesions of metastatic colorectal cancer patients. Tumor tissue was obtained from patients undergoing surgical resection of the primary or metastatic lesion and then used to establish PDOs. Immunohistochemistry (IHC) and drug sensitivity assays were performed to analyze the properties of these organoids. Results: The mCRC organoids were successfully established with an 80% success rate. The PDOs maintained the genetic and phenotypic heterogeneity of their parental tumors. The IC50 values of5-fluorouracil (5-FU), oxaliplatin, and irinotecan (CPT11) were determined for mCRC organoids using drug sensitivity assays. The in vitro chemosensitivity data revealed the potential value of PDOs for clinical applications in predicting chemotherapy response and clinical outcomes in mCRC patients. Discussion: In summary, the PDO model is an effective platform for in vitro assessment of patient-specific drug sensitivity, which can guide personalized treatment decisions for patients with end-stage CRC.
    Type of Medium: Online Resource
    ISSN: 2296-4185
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2719493-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...