GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cahoon, Emily B.  (2)
Material
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    Geological Society of America ; 2020
    In:  Geology Vol. 48, No. 4 ( 2020-04-01), p. 348-352
    In: Geology, Geological Society of America, Vol. 48, No. 4 ( 2020-04-01), p. 348-352
    Abstract: The Columbia River Basalt Group (CRBG) is the world’s youngest continental flood basalt province, presumably sourced from the deep-seated plume that currently resides underneath Yellowstone National Park in the northwestern United States. The earliest-erupted basalts from this province aid in understanding and modeling plume impingement and the subsequent evolution of basaltic volcanism. We explore the Picture Gorge Basalt (PGB) formation of the CRBG, and discuss the location and geochemical significance in a temporal context of early CRBG magmatism. We report new ARGUS-VI multicollector 40Ar/39Ar incremental heating ages from known PGB localities and additional outcrops that we can geochemically classify as PGB. These 40Ar/39Ar ages range between 17.23 ± 0.04 Ma and 16.06 ± 0.14 Ma, indicating that PGB erupted earlier and for longer than other CRBG main-phase units. These ages illustrate that volcanism initiated over a broad area in the center of the province, and the geochemistry of these early lavas reflects a mantle source that is distinct both spatially and temporally. Combining ages with the strongest arc-like (but depleted) geochemical signal of PGB among CRBG units indicates that the shallowest metasomatized backarc-like mantle was tapped first and concurrently, with later units (Steens and Imnaha Basalts) showing increased influence of a plume-like source.
    Type of Medium: Online Resource
    ISSN: 0091-7613 , 1943-2682
    Language: English
    Publisher: Geological Society of America
    Publication Date: 2020
    detail.hit.zdb_id: 184929-3
    detail.hit.zdb_id: 2041152-2
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Geological Society of America ; 2023
    In:  Geosphere Vol. 19, No. 2 ( 2023-04-01), p. 406-430
    In: Geosphere, Geological Society of America, Vol. 19, No. 2 ( 2023-04-01), p. 406-430
    Abstract: The Picture Gorge Basalt (PGB) of the Columbia River Basalt Group (CRBG) has been previously thought to be limited in its eruptive volume ( & lt;3000 km3) and thought to not extend far from its type locality. At present, PGB represents only 1.1 vol% of the CRBG with a relatively limited spatial distribution of ~10,000 km2. New age data illustrate that the PGB is the earliest and longest eruptive unit compared to other main-phase CRBG formations and that some dated basaltic flows reach far (~100 km) beyond the previously mapped extent. This study focuses on extensive outcrops of basaltic lavas and dikes south of the type locality at Picture Gorge, in order to reassess the spatial distribution and eruptive volume of the PGB. Field observations coupled with geochemical data indicate that PGB lava flows and mafic dikes covered a significantly greater area than shown on the published geologic maps. We find that additional mafic dikes located farther south of the original mapped distribution have geochemical compositions and northwest-trending orientations comparable to the dikes of the Monument dike swarm. We also identify new lava flows that can be correlated where stratigraphic control is well defined toward the original mapped PGB distribution. Our analyses and correlations are facilitated by comparison of 20 major- and trace-element abundances via a principal component analysis. This statistical comparison provides a new detailed distribution of PGB with stratigraphic significance that more than doubles the total distribution of PGB lavas and dikes and brings the eruptive volume to a new minimum of at least ~4200 km3. Geochemically correlated basaltic lavas and dikes in the extended distribution of PGB represent the earlier and later sections of the internal PGB stratigraphy. This is an intriguing observation as new geochronological data suggest an eruptive hiatus of ~400 k.y. during PGB volcanic activity, which occurred from 17.23 Ma to 15.76 Ma. The geochemical identifiers used to differentiate PGB from other main-phase CRBG formations include lower TiO2 ( & lt;2 wt%) concentrations, lower incompatible trace-element (i.e., La, Th, and Y) abundances, and a more pronounced enrichment in large- ion- lithophile elements (LILEs) on a primitive mantle–normalized trace-element diagram (Sun and McDonough, 1989). Geochemical characteristics of PGB are interpreted to represent a magmatic source component distinct from the other main-phase CRBG units, possibly a localized backarc-sourced mantle melt. However, this source cannot be spatially restricted as there are observed PGB lava flows and dikes extending as far east as Lake Owyhee and as far south as Hart Mountain, covering at least 15,000 km2. In context with the existing stratigraphy and the new extent of PGB lavas and dikes, these ages and coupled geochemical signatures demonstrate this mantle component was not spatially localized but rather tapped across a wide region.
    Type of Medium: Online Resource
    ISSN: 1553-040X
    Language: English
    Publisher: Geological Society of America
    Publication Date: 2023
    detail.hit.zdb_id: 2201816-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...