GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Development, The Company of Biologists, Vol. 145, No. 3 ( 2018-02-01)
    Abstract: Our understanding of the transcriptional programme underpinning adult hippocampal neurogenesis is incomplete. In mice, under basal conditions, adult hippocampal neural stem cells (AH-NSCs) generate neurons and astrocytes, but not oligodendrocytes. The factors limiting oligodendrocyte production, however, remain unclear. Here, we reveal that the transcription factor NFIX plays a key role in this process. NFIX is expressed by AH-NSCs, and its expression is sharply upregulated in adult hippocampal neuroblasts. Conditional ablation of Nfix from AH-NSCs, coupled with lineage tracing, transcriptomic sequencing and behavioural studies collectively reveal that NFIX is cell-autonomously required for neuroblast maturation and survival. Moreover, a small number of AH-NSCs also develop into oligodendrocytes following Nfix deletion. Remarkably, when Nfix is deleted specifically from intermediate progenitor cells and neuroblasts using a Dcx-creERT2 driver, these cells also display elevated signatures of oligodendrocyte gene expression. Together, these results demonstrate the central role played by NFIX in neuroblasts within the adult hippocampal stem cell neurogenic niche in promoting the maturation and survival of these cells, while concomitantly repressing oligodendrocyte gene expression signatures.
    Type of Medium: Online Resource
    ISSN: 1477-9129 , 0950-1991
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2018
    detail.hit.zdb_id: 2007916-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Genes, Brain and Behavior, Wiley, Vol. 19, No. 4 ( 2020-04)
    Abstract: Sotos syndrome is a developmental disorder characterized by a suite of clinical features. In children, the three cardinal features of Sotos syndrome are a characteristic facial appearance, learning disability and overgrowth (height and/or head circumference  〉  2 SDs above average). These features are also evident in adults with this syndrome. Over 90% of Sotos syndrome patients are haploinsufficient for the gene encoding nuclear receptor‐binding Su(var)3‐9, Enhancer‐of‐zesteand Trithorax domain‐containing protein 1 (NSD1). NSD1 is a histone methyltransferase that catalyzes the methylation of lysine residue 36 on histone H3. However, although the symptomology of Sotos syndrome is well established, many aspects of NSD1 biology remain unknown. Here, we assessed the expression of Nsd1 within the mouse brain, and showed a predominantly neuronal pattern of expression for this histone‐modifying factor. We also generated a mouse strain lacking one allele of Nsd1 and analyzed morphological and behavioral characteristics in these mice, showing behavioral characteristics reminiscent of some of the deficits seen in Sotos syndrome patients.
    Type of Medium: Online Resource
    ISSN: 1601-1848 , 1601-183X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2061212-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 6, No. 1 ( 2016-05-16)
    Abstract: Within the adult mammalian brain, neurogenesis persists within two main discrete locations, the subventricular zone lining the lateral ventricles and the hippocampal dentate gyrus. Neurogenesis within the adult dentate gyrus contributes to learning and memory and deficiencies in neurogenesis have been linked to cognitive decline. Neural stem cells within the adult dentate gyrus reside within the subgranular zone (SGZ) and proteins intrinsic to stem cells and factors within the niche microenvironment, are critical determinants for development and maintenance of this structure. Our understanding of the repertoire of these factors, however, remains limited. The deubiquitylating enzyme USP9X has recently emerged as a mediator of neural stem cell identity. Furthermore, mice lacking Usp9x exhibit a striking reduction in the overall size of the adult dentate gyrus. Here we reveal that the development of the postnatal SGZ is abnormal in mice lacking Usp9x . Usp9x conditional knockout mice exhibit a smaller hippocampus and shortened dentate gyrus blades from as early as P7. Moreover, the analysis of cellular populations within the dentate gyrus revealed reduced stem cell, neuroblast and neuronal numbers and abnormal neuroblast morphology. Collectively, these findings highlight the critical role played by USP9X in the normal morphological development of the postnatal dentate gyrus.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...