GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Burgos, Leire  (3)
  • Paiva, Bruno  (3)
  • 1
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 509-509
    Abstract: In MM patients relapsing after MRD-negativity, the disease could reemerge from immature cells or from undetectable MRD. However, it remains unknown if immature cells have the same genetic background as MM plasma cells (PCs), as well as the amount of MRD that persists below the limit of detection (LOD) of next-generation techniques. To obtain further insight, we compared the biological landscape of MM PCs at diagnosis to that of CD34 progenitors, B cells and normal PCs isolated from patients with negative MRD by next-generation flow (NGF) after treatment. We performed whole-exome sequencing (WES, mean depth: 90x) with the 10XGenomics Exome Solution for low DNA-input as well as deep NGS of B-cell receptor immunoglobulin (BcR IG) gene rearrangements (mean, 69,975 sequences), in a total of 68 cell-samples isolated from the bone marrow (BM) of 7 MM patients with MRD-negativity by EuroFlow NGF after induction with VRD and auto-transplant (GEM2012MENOS65 trial). Patients with negative MRD were intentionally selected to avoid contamination with MM PCs during sorting of CD34 progenitors, B-cell precursors, mature B cells and normal PCs after induction and transplant. We investigated in these populations the presence of somatic mutations and clonotypic BcR Ig rearrangements detectable in MM PCs sorted at diagnosis, using peripheral blood T cells as germline control. We also performed WES in matched diagnostic MM PCs and MRD cells persisting after VRD induction in 14 cases as control. In another 6 patients with untreated MM, we performed single-cell RNA and BcR IG sequencing (scRNA/BcRIGseq) of total BM B cells and PCs (n=16,380) to investigate before treatment, if the clonotypic BcR IG sequence of MM PCs was detectable in other B cell stages defined by their molecular phenotype. We used multidimensional flow cytometry (MFC) to investigate the frequency of B cell clonality in BM samples from a larger series of 195 newly-diagnosed MM patients, prospectively enrolled in the GEM-CLARIDEX trial. Somatic mutations present in diagnostic MM PCs were detectable in the lymphopoiesis of 5/7 patients achieving MRD-negativity after treatment. In one case, out of 55 mutations present in diagnostic MM PCs, a single mutation in PCSK1N (VAF: 0.30) was detectable in normal PCs. In the other four patients, a total of 85 mutations were present in MM PCs and up to 10 (median VAF, 0.16) were found all the way from CD34 progenitors into B-cell precursors, mature B cells and normal PCs, but not in T cells. Of note, most mutations were reproducibly detected in each cell type after induction and after transplant. All somatic mutations shared by MM PCs and normal cells were non-recurrent, and genes recurrently mutated in MM (eg. ACTG1, ATM, DIS3, FAM46C, KRAS, LTB, MAX, TRAF3) were found in MM PCs but never in normal cells. Copy number alterations (CNA) were found only in MM PCs. By contrast, up to 513/827 (62%) mutations and 48/67 (72%) CNA were detectable in matched diagnostic MM PCs and persistent MRD cells, indicating that the few somatic variants present in normal cells were unlikely related to contaminating MRD below NGF's LOD. Accordingly, MM clonotypic BcR IG rearrangements were detectable in normal PCs (4/7patients) and in immature B cells (5/7 patients) but at much lower frequencies (mean of 0.02% in both). Of note, 9 additional clonotypes (mean 8.4%) were found in MM PCs of 5/7 patients (range, 1-3). scRNR/BcRIGseq unveiled that clonotypic cells were confined mostly but not entirely within PC clusters, and that in 1 patient another clonotype was detectable in mature B cells. Accordingly, using MFC we found in a larger series that 25/195 (13%) of newly-diagnosed MM patients display B-cell clonality (median of 0.7% BM clonal B cells, range 0.02%-6.3%). In conclusion, we show for the first time that MM patients bear somatic mutations in CD34 progenitors that specifically differentiate into the B cell lineage, likely before the disease onset. Because diagnostic, MRD (and relapse) MM PCs display great genetic similarity, these results suggest that undetectable MRD & lt;10-6 rather than normal cells with a few non-recurrent mutations are responsible for relapses after MRD-negativity. This study also challenges our understanding of myelomagenesis and clonal heterogeneity, and proposes that mutated lymphopoiesis may increase risk of developing B cell and PC oligoclonality, which precedes secondary driver mutations or CNA leading to the expansion of MM PCs. Disclosures Puig: Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Takeda, Amgen: Consultancy, Honoraria; The Binding Site: Honoraria; Janssen: Consultancy, Honoraria, Research Funding. Martinez-Lopez:BMS: Honoraria, Other: Advisory boards; Janssen: Honoraria, Other: Advisory boards and Non-Financial Support ; Amgen: Honoraria, Other: Non-Financial Support ; Celgene: Honoraria, Other: Advisory boards and Non-Financial Support ; Incyte: Honoraria, Other: Advisory boards; Novartis: Honoraria, Other: Advisory boards; VIVIA Biotech: Honoraria; F. Hoffmann-La Roche Ltd: Honoraria. Lahuerta:Takeda, Amgen, Celgene and Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees. Rosinol Dachs:Janssen, Celgene, Amgen and Takeda: Honoraria. Bladé:Jansen, Celgene, Takeda, Amgen and Oncopeptides: Honoraria. Mateos:EDO: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; GSK: Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Adaptive: Honoraria; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pharmamar: Membership on an entity's Board of Directors or advisory committees. San-Miguel:Amgen, Bristol-Myers Squibb, Celgene, Janssen, MSD, Novartis, Roche, Sanofi, and Takeda: Consultancy, Honoraria. Paiva:Amgen, Bristol-Myers Squibb, Celgene, Janssen, Merck, Novartis, Roche, and Sanofi; unrestricted grants from Celgene, EngMab, Sanofi, and Takeda; and consultancy for Celgene, Janssen, and Sanofi: Consultancy, Honoraria, Research Funding, Speakers Bureau.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Clinical Lymphoma Myeloma and Leukemia, Elsevier BV, Vol. 19, No. 10 ( 2019-10), p. e351-e352
    Type of Medium: Online Resource
    ISSN: 2152-2650
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 2540998-0
    detail.hit.zdb_id: 2193618-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 506-506
    Abstract: Background: The broad use of immunomodulatory drugs (IMiDs) and the breakthrough of novel immunotherapies in MM, urge the optimization of immune monitoring to help tailoring treatment based on better prediction of patients' response according to their immune status. For example, current T cells immune monitoring is of limited value because the phenotype of tumor-reactive T cells is uncertain. Aims: To characterize the MM immune microenvironment at the single-cell level and to identify clinically relevant subsets for effective immune monitoring. Methods: We used a semi-automated pipeline to unveil full cellular diversity based on unbiased clustering, in a large flow cytometry dataset of 86 newly-diagnosed MM patients enrolled in the PETHEMA/GEM2012MENOS65 clinical trial, including immune monitoring at diagnosis, after induction with bortezomib, lenalidomide, dexamethasone (VRD), autologous transplant and VRD consolidation. Immunophenotyping was performed using the first 8-color combination (CD19, CD27, CD38, CD45, CD56, CD81, CD117, CD138) of the next-generation flow (NGF) panel for MRD assessment. Results were then validated in additional 145 patients enrolled in the same trial. Deep characterization of T cells was performed using 17-color multidimensional flow cytometry (TIM3, CD160, TIGIT, CD57, CD8, PD1, CD45RA, CD56, BTLA, CD4, CD3, CD39, CD137, CTLA4, CCR7, CD16, CD27) and combined single-cell (sc) RNA/TCR sequencing (10xGenomics). Results: Simultaneous analysis of the entire dataset (n=333 files) unbiasedly identified 25 cell clusters (including 9 myeloid and 13 lymphocytes subsets) in the MM immune microenvironment. Afterwards, we correlated a total of 120 immune parameters derived from the cellular abundance of each cluster and specific cell ratios determined at all time points, with a total of 20 clinical parameters including the International Staging System (ISS) and FISH cytogenetics. Twelve variables had significant impact in progression-free survival (PFS) and the ratio between CD27- vs CD27+ T cells emerged as an independent prognostic factor (HR:0.09, p=0.04) together with the ISS in a Cox regression model. The 3-year PFS rates of patients with high vs low CD27-/CD27+ ratios were 94% vs 71% (p=0.02), respectively; these findings being confirmed in the validation dataset. Thus, we observed in the entire cohort (n=231) that a prognostic score including the CD27-/CD27+ T cell ratio (HR:0.21, p=0.013) and ISS (HR:1.41, p=0.015) outperformed each parameter alone (HR:0.06, p=0.007). To gain further insight into the biological significance of the CD27-/CD27+ T cell ratio, we performed scRNA/TCRseq in 44,969 lymphocytes from 9 MM patients. Downstream analysis unveiled that CD27- T cells were mostly CD8 and included senescent, effector and exhausted clusters. By contrast, CD27+ T cells were mainly CD4 and the remaining CD8 T cells had a predominant immune suppressive phenotype (ie. high GZMK, TIGIT, LAG3 and PD1 expression levels). Such T cell clustering was validated by 17-color multidimensional flow cytometry that confirmed the cellular distribution identified by scRNAseq, as well as higher reactivity for PD1, TIGIT, BTLA and TIM3 in CD27+ vs CD27- T cells. Simultaneous scTCRseq revealed a total of 90 different clonotypes (median of 12 per patient). Interestingly, most clonotypes where found in CD27- (74/90) as opposed to CD27+ T cells and, using the VDJB database, the CDR3 sequences of clonotypic effector/exhausted CD27- T cells were predicted to recognize MM-related epitopes such as MLANA, HM1.24 (CD319), TKT, or IMP2. In selected patients, we performed exome- and RNA-sequencing of tumor cells and analyzed their HLA profile. Using the T Cell Epitopes - MHC Binding Prediction tool from the IEDB Analysis Resource, we found expression of mutated genes (e.g. UBXN1, UPF2, GNB1L) predicted to bind MHC class I molecules on tumor cells and potentially recognized by autologous clonotypic CD27- T cells. Conclusion: We show for the first time that potential MM-reactive T cells are CD27-negative and that their abundance in the immune microenvironment of newly-diagnosed MM patients is prognostic, possibly due to their reactivation after treatment with IMiDs and autologous transplant. Because NGF is broadly used, these results are readily applicable for effective T cell immune monitoring. Disclosures Puig: Janssen: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Amgen: Consultancy, Honoraria; The Binding Site: Honoraria; Takeda: Consultancy, Honoraria. Rosinol Dachs:Janssen, Celgene, Amgen and Takeda: Honoraria. Oriol:Janssen: Consultancy; Takeda: Consultancy, Speakers Bureau; Amgen: Consultancy, Speakers Bureau; Celgene Corporation: Consultancy, Speakers Bureau. Rios:Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees. Sureda:Takeda: Consultancy, Honoraria, Speakers Bureau; Novartis: Honoraria; Gilead: Honoraria; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; BMS: Honoraria; Roche: Honoraria; Sanofi: Honoraria; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel Support; Amgen: Membership on an entity's Board of Directors or advisory committees. De La Rubia:Takeda: Consultancy; Janssen: Consultancy; Celgene Corporation: Consultancy; AMGEN: Consultancy; AbbVie: Consultancy. Mateos:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Adaptive: Honoraria; EDO: Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pharmamar: Membership on an entity's Board of Directors or advisory committees; GSK: Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees. Lahuerta:Takeda, Amgen, Celgene and Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees. Bladé:Irctures: Honoraria; Janssen, Celgene, Amgen, Takeda: Membership on an entity's Board of Directors or advisory committees. San-Miguel:Amgen, Bristol-Myers Squibb, Celgene, Janssen, MSD, Novartis, Roche, Sanofi, and Takeda: Consultancy, Honoraria. Paiva:Amgen, Bristol-Myers Squibb, Celgene, Janssen, Merck, Novartis, Roche, and Sanofi; unrestricted grants from Celgene, EngMab, Sanofi, and Takeda; and consultancy for Celgene, Janssen, and Sanofi: Consultancy, Honoraria, Research Funding, Speakers Bureau.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...