GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Materials, MDPI AG, Vol. 14, No. 22 ( 2021-11-14), p. 6865-
    Abstract: Underwater concrete is a cohesive self-consolidated concrete used for concreting underwater structures such as bridge piers. Conventional concrete used anti-washout admixture (AWA) to form a high-viscosity underwater concrete to minimise the dispersion of concrete material into the surrounding water. The reduction of quality for conventional concrete is mainly due to the washing out of cement and fine particles upon casting in the water. This research focused on the detailed investigations into the setting time, washout effect, compressive strength, and chemical composition analysis of alkali-activated fly ash (AAFA) paste through underwater placement in seawater and freshwater. Class C fly ash as source materials, sodium silicate, and sodium hydroxide solution as alkaline activator were used for this study. Specimens produced through underwater placement in seawater showed impressive performance with strength 71.10 MPa on 28 days. According to the Standard of the Japan Society of Civil Engineers (JSCE), the strength of specimens for underwater placement must not be lower than 80% of the specimen’s strength prepared in dry conditions. As result, the AAFA specimens only showed 12.11% reduction in strength compared to the specimen prepared in dry conditions, thus proving that AAFA paste has high potential to be applied in seawater and freshwater applications.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Materials, MDPI AG, Vol. 15, No. 1 ( 2021-12-28), p. 202-
    Abstract: Coal ash-based geopolymers with mine tailings addition activated with phosphate acid were synthesized for the first time at room temperature. In addition, three types of aluminosilicate sources were used as single raw materials or in a 1/1 wt. ratio to obtain five types of geopolymers activated with H3PO4. The thermal behaviour of the obtained geopolymers was studied between room temperature and 600 °C by Thermogravimetry-Differential Thermal Analysis (TG-DTA) and the phase composition after 28 days of curing at room temperature was analysed by X-ray diffraction (XRD). During heating, the acid-activated geopolymers exhibited similar behaviour to alkali-activated geopolymers. All of the samples showed endothermic peaks up to 300 °C due to water evaporation, while the samples with mine tailings showed two significant exothermic peaks above 400 °C due to oxidation reactions. The phase analysis confirmed the dissolution of the aluminosilicate sources in the presence of H3PO4 by significant changes in the XRD patterns of the raw materials and by the broadening of the peaks because of typically amorphous silicophosphate (Si–P), aluminophosphate (Al–P) or silico-alumino-phosphate (Si–Al–P) formation. The phases resulted from geopolymerisation are berlinite (AlPO4), brushite (CaHPO4∙2H2O), anhydrite (CaSO4) or ettringite as AFt and AFm phases.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Materials, MDPI AG, Vol. 15, No. 1 ( 2022-01-05), p. 375-
    Abstract: Geopolymers, or also known as alkali-activated binders, have recently emerged as a viable alternative to conventional binders (cement) for soil stabilization. Geopolymers employ alkaline activation of industrial waste to create cementitious products inside treated soils, increasing the clayey soils’ mechanical and physical qualities. This paper aims to review the utilization of fly ash and ground granulated blast furnace slag (GGBFS)-based geopolymers for soil stabilization by enhancing strength. Previous research only used one type of precursor: fly ash or GGBFS, but the strength value obtained did not meet the ASTM D 4609 ( 〈 0.8 Mpa) standard required for soil-stabilizing criteria of road construction applications. This current research focused on the combination of two types of precursors, which are fly ash and GGBFS. The findings of an unconfined compressive strength (UCS) test on stabilized soil samples were discussed. Finally, the paper concludes that GGBFS and fly-ash-based geo-polymers for soil stabilization techniques can be successfully used as a binder for soil stabilization. However, additional research is required to meet the requirement of ASTM D 4609 standard in road construction applications, particularly in subgrade layers.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Materials, MDPI AG, Vol. 15, No. 7 ( 2022-04-05), p. 2667-
    Abstract: Geopolymer materials are used as construction materials due to their lower carbon dioxide (CO2) emissions compared with conventional cementitious materials. An example of a geopolymer material is alkali-activated kaolin, which is a viable alternative for producing high-strength ceramics. Producing high-performing kaolin ceramics using the conventional method requires a high processing temperature (over 1200 °C). However, properties such as pore size and distribution are affected at high sintering temperatures. Therefore, knowledge regarding the sintering process and related pore structures on alkali-activated kaolin geopolymer ceramic is crucial for optimizing the properties of the aforementioned materials. Pore size was analyzed using neutron tomography, while pore distribution was observed using synchrotron micro-XRF. This study elucidated the pore structure of alkali-activated kaolin at various sintering temperatures. The experiments showed the presence of open pores and closed pores in alkali-activated kaolin geopolymer ceramic samples. The distributions of the main elements within the geopolymer ceramic edifice were found with Si and Al maps, allowing for the identification of the kaolin geopolymer. The results also confirmed that increasing the sintering temperature to 1100 °C resulted in the alkali-activated kaolin geopolymer ceramic samples having large pores, with an average size of ~80 µm3 and a layered porosity distribution.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Materials, MDPI AG, Vol. 13, No. 2 ( 2020-01-11), p. 343-
    Abstract: In this paper, the effect on thermal behavior and compounds mineralogy of replacing different percentages of fly ash with compact particles was studied. A total of 30% of fly ash was replaced with mass powder glass (PG), 70% with mass natural aggregates (S), and 85% with mass PG and S. According to this study, the obtained fly ash based geopolymer exhibits a 20% mass loss in the 25–300 °C temperature range due to the free or physically bound water removal. However, the mass loss is closely related to the particle percentage. Multiple endothermic peaks exhibit the dihydroxylation of β-FeOOH (goethite) at close to 320 °C, the Ca(OH)2 (Portlandite) transformation to CaCO3 (calcite) occurs at close to 490 °C, and Al(OH)3 decomposition occurs at close to 570 °C. Moreover, above 600 °C, the curves show only very small peaks which may correspond to Ti or Mg hydroxides decomposition. Also, the X-ray diffraction (XRD) pattern confirms the presence of sodalite after fly ash alkaline activation, whose content highly depends on the compact particles percentage. These results highlight the thermal stability of geopolymers in the 25–1000 °C temperature range through the use of thermogravimetric analysis, differential thermal analysis, and XRD.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Materials, MDPI AG, Vol. 13, No. 14 ( 2020-07-18), p. 3211-
    Abstract: Geopolymers are zeolites like structures based on hydrated aluminosilicates units of SiO4 and AlO4. These units, known as poly(sialate), poly(sialate)-siloxo or poly(sialate)-disiloxo are chemically balanced by the group I cations of K+, Li+, or Na+. Simultaneously, the chemical reaction of formation, known as geopolymerization, governs the orientation of the unit, generating mesoporous structures. Multiple methods can be used for pore structure and porosity characterization. Among them, nuclear magnetic resonance (NMR) relaxometry allows the detection of the porous structure in a completely nonperturbative manner. NMR relaxometry may be used to monitor the relaxation of protons belonging to the liquid molecules confined inside the porous structure and, thus, to get access to the pore size distribution. This monitoring can take place even during the polymerization process. The present study implements transverse relaxation measurements to monitor the influence introduced by the curing time on the residual liquid phase of geopolymers prepared with two different types of reinforcing particles. According to our results, the obtained geopolymers contain three types of pores formed by the arrangement of the OH− and Si groups (Si-OH), Si-O-Si groups, Si-O-Al groups, and Si-O rings. After 48 days, the samples cured for 8 h show a high percentage of all three types of pores, however, by increasing the curing time and the percentage of reinforcing particle, the percent of pores decrease, especially, the gel pores.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Revista de Chimie SRL ; 2019
    In:  Revista de Chimie Vol. 70, No. 4 ( 2019-5-15), p. 1262-1267
    In: Revista de Chimie, Revista de Chimie SRL, Vol. 70, No. 4 ( 2019-5-15), p. 1262-1267
    Abstract: Global industrialization generates large amount of waste which strongly affects the depositing areas and the living creatures from the surroundings. In the same time, the construction sector meets an exponential development process, resulting in materials and construction areas increase. Therefore, the need of new materials was felt worldwide. One solution that knew a rapid development, especially in this sector, was to obtain new eco-friendly materials through a mechanism called geopolymerization. True this powerful chemical reaction between a waste, rich in aluminum and silicon, and a strong alkaline solution, a tetragonal structure of Al-O-Si is obtained that possess properties comparable to those of Portland cement-based concrete. In the present paper the effect of aggregates on local fly ash based geopolymers is analyzed from the structure and mechanical properties point of view. According to this study, the aggregates strongly influence the density, compression strength and flexural strength at any age of samples.
    Type of Medium: Online Resource
    ISSN: 0034-7752 , 2668-8212
    Language: English
    Publisher: Revista de Chimie SRL
    Publication Date: 2019
    detail.hit.zdb_id: 2488208-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...