GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (2)
  • Buhrdorf, Renate  (2)
Material
Publisher
  • American Society for Microbiology  (2)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 2008
    In:  Journal of Bacteriology Vol. 190, No. 6 ( 2008-03-15), p. 2161-2171
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 190, No. 6 ( 2008-03-15), p. 2161-2171
    Abstract: Type IV secretion systems are possibly the most versatile protein transport systems in gram-negative bacteria, with substrates ranging from small proteins to large nucleoprotein complexes. In many cases, such as the cag pathogenicity island of Helicobacter pylori , genes encoding components of a type IV secretion system have been identified due to their sequence similarities to prototypical systems such as the VirB system of Agrobacterium tumefaciens . The Cag type IV secretion system contains at least 14 essential apparatus components and several substrate translocation and auxiliary factors, but the functions of most components cannot be inferred from their sequences due to the lack of similarities. In this study, we have performed a comprehensive sequence analysis of all essential or auxiliary Cag components, and we have used antisera raised against a subset of components to determine their subcellular localization. The results suggest that the Cag system contains functional analogues to all VirB components except VirB5. Moreover, we have characterized mutual stabilization effects and performed a comprehensive yeast two-hybrid screening for potential protein-protein interactions. Immunoprecipitation studies resulted in identification of a secretion apparatus subassembly at the outer membrane. Combining these data, we provide a first low-resolution model of the Cag type IV secretion apparatus.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2008
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2001
    In:  Infection and Immunity Vol. 69, No. 11 ( 2001-11), p. 6769-6775
    In: Infection and Immunity, American Society for Microbiology, Vol. 69, No. 11 ( 2001-11), p. 6769-6775
    Abstract: Helicobacter pylori produces a number of proteins associated with the outer membrane, including adhesins and the vacuolating cytotoxin. These proteins are supposed to integrate into the outer membrane by β-barrel structures, characteristic of the family of autotransporter proteins. By using the SOMPES (shuttle vector-based outer membrane protein expression) system for outer membrane protein production, we were able to functionally express in H. pylori the cholera toxin B subunit genetically fused to the C-terminal VacA domain. We demonstrate that the fusion protein is translocated to the H. pylori outer membrane and that the CtxB domain is exposed on the H. pylori surface. Thus, we provide the first experimental evidence that the C-terminal β-domain of VacA can transport a foreign passenger protein to the H. pylori surface and hence acts as a functional autotransporter.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2001
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...