GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Diabetes Association  (3)
  • Buckingham, Bruce  (3)
  • Wadwa, R. Paul  (3)
Materialart
Verlag/Herausgeber
  • American Diabetes Association  (3)
Sprache
Erscheinungszeitraum
  • 1
    In: Diabetes Care, American Diabetes Association, Vol. 41, No. 9 ( 2018-09-01), p. 1887-1894
    Kurzfassung: We tested the ability of a type 1 diabetes (T1D) genetic risk score (GRS) to predict progression of islet autoimmunity and T1D in at-risk individuals. RESEARCH DESIGN AND METHODS We studied the 1,244 TrialNet Pathway to Prevention study participants (T1D patients’ relatives without diabetes and with one or more positive autoantibodies) who were genotyped with Illumina ImmunoChip (median [range] age at initial autoantibody determination 11.1 years [1.2–51.8], 48% male, 80.5% non-Hispanic white, median follow-up 5.4 years). Of 291 participants with a single positive autoantibody at screening, 157 converted to multiple autoantibody positivity and 55 developed diabetes. Of 953 participants with multiple positive autoantibodies at screening, 419 developed diabetes. We calculated the T1D GRS from 30 T1D-associated single nucleotide polymorphisms. We used multivariable Cox regression models, time-dependent receiver operating characteristic curves, and area under the curve (AUC) measures to evaluate prognostic utility of T1D GRS, age, sex, Diabetes Prevention Trial–Type 1 (DPT-1) Risk Score, positive autoantibody number or type, HLA DR3/DR4-DQ8 status, and race/ethnicity. We used recursive partitioning analyses to identify cut points in continuous variables. RESULTS Higher T1D GRS significantly increased the rate of progression to T1D adjusting for DPT-1 Risk Score, age, number of positive autoantibodies, sex, and ethnicity (hazard ratio [HR] 1.29 for a 0.05 increase, 95% CI 1.06–1.6; P = 0.011). Progression to T1D was best predicted by a combined model with GRS, number of positive autoantibodies, DPT-1 Risk Score, and age (7-year time-integrated AUC = 0.79, 5-year AUC = 0.73). Higher GRS was significantly associated with increased progression rate from single to multiple positive autoantibodies after adjusting for age, autoantibody type, ethnicity, and sex (HR 2.27 for GRS & gt;0.295, 95% CI 1.47–3.51; P = 0.0002). CONCLUSIONS The T1D GRS independently predicts progression to T1D and improves prediction along T1D stages in autoantibody-positive relatives.
    Materialart: Online-Ressource
    ISSN: 0149-5992 , 1935-5548
    Sprache: Englisch
    Verlag: American Diabetes Association
    Publikationsdatum: 2018
    ZDB Id: 1490520-6
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Diabetes Care, American Diabetes Association, Vol. 42, No. 2 ( 2019-02-01), p. 192-199
    Kurzfassung: There are variable reports of risk of concordance for progression to islet autoantibodies and type 1 diabetes in identical twins after one twin is diagnosed. We examined development of positive autoantibodies and type 1 diabetes and the effects of genetic factors and common environment on autoantibody positivity in identical twins, nonidentical twins, and full siblings. RESEARCH DESIGN AND METHODS Subjects from the TrialNet Pathway to Prevention Study (N = 48,026) were screened from 2004 to 2015 for islet autoantibodies (GAD antibody [GADA], insulinoma-associated antigen 2 [IA-2A] , and autoantibodies against insulin [IAA]). Of these subjects, 17,226 (157 identical twins, 283 nonidentical twins, and 16,786 full siblings) were followed for autoantibody positivity or type 1 diabetes for a median of 2.1 years. RESULTS At screening, identical twins were more likely to have positive GADA, IA-2A, and IAA than nonidentical twins or full siblings (all P & lt; 0.0001). Younger age, male sex, and genetic factors were significant factors for expression of IA-2A, IAA, one or more positive autoantibodies, and two or more positive autoantibodies (all P ≤ 0.03). Initially autoantibody-positive identical twins had a 69% risk of diabetes by 3 years compared with 1.5% for initially autoantibody-negative identical twins. In nonidentical twins, type 1 diabetes risk by 3 years was 72% for initially multiple autoantibody–positive, 13% for single autoantibody–positive, and 0% for initially autoantibody-negative nonidentical twins. Full siblings had a 3-year type 1 diabetes risk of 47% for multiple autoantibody–positive, 12% for single autoantibody–positive, and 0.5% for initially autoantibody-negative subjects. CONCLUSIONS Risk of type 1 diabetes at 3 years is high for initially multiple and single autoantibody–positive identical twins and multiple autoantibody–positive nonidentical twins. Genetic predisposition, age, and male sex are significant risk factors for development of positive autoantibodies in twins.
    Materialart: Online-Ressource
    ISSN: 0149-5992 , 1935-5548
    Sprache: Englisch
    Verlag: American Diabetes Association
    Publikationsdatum: 2019
    ZDB Id: 1490520-6
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Diabetes Care, American Diabetes Association, Vol. 43, No. 8 ( 2020-08-01), p. 1822-1828
    Kurzfassung: Limited information is available about glycemic outcomes with a closed-loop control (CLC) system compared with a predictive low-glucose suspend (PLGS) system. RESEARCH DESIGN AND METHODS After 6 months of use of a CLC system in a randomized trial, 109 participants with type 1 diabetes (age range, 14–72 years; mean HbA1c, 7.1% [54 mmol/mol]) were randomly assigned to CLC (N = 54, Control-IQ) or PLGS (N = 55, Basal-IQ) groups for 3 months. The primary outcome was continuous glucose monitor (CGM)-measured time in range (TIR) for 70–180 mg/dL. Baseline CGM metrics were computed from the last 3 months of the preceding study. RESULTS All 109 participants completed the study. Mean ± SD TIR was 71.1 ± 11.2% at baseline and 67.6 ± 12.6% using intention-to-treat analysis (69.1 ± 12.2% using per-protocol analysis excluding periods of study-wide suspension of device use) over 13 weeks on CLC vs. 70.0 ± 13.6% and 60.4 ± 17.1% on PLGS (difference = 5.9%; 95% CI 3.6%, 8.3%; P & lt; 0.001). Time & gt;180 mg/dL was lower in the CLC group than PLGS group (difference = −6.0%; 95% CI −8.4%, −3.7%; P & lt; 0.001) while time & lt;54 mg/dL was similar (0.04%; 95% CI −0.05%, 0.13%; P = 0.41). HbA1c after 13 weeks was lower on CLC than PLGS (7.2% [55 mmol/mol] vs. 7.5% [56 mmol/mol] , difference −0.34% [−3.7 mmol/mol]; 95% CI −0.57% [−6.2 mmol/mol] , −0.11% [1.2 mmol/mol]; P = 0.0035). CONCLUSIONS Following 6 months of CLC, switching to PLGS reduced TIR and increased HbA1c toward their pre-CLC values, while hypoglycemia remained similarly reduced with both CLC and PLGS.
    Materialart: Online-Ressource
    ISSN: 0149-5992 , 1935-5548
    Sprache: Englisch
    Verlag: American Diabetes Association
    Publikationsdatum: 2020
    ZDB Id: 1490520-6
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...