GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Bruns, Ingmar  (2)
  • Pechtel, Sabrina  (2)
  • 2005-2009  (2)
  • 1
    In: Blood, American Society of Hematology, Vol. 110, No. 11 ( 2007-11-16), p. 3170-3170
    Abstract: During the last decade, chronic myeloid leukemia (CML) has been mainly characterized by the reciprocal translocation between chromosomes 9 and 22, resulting in the formation of the protooncogene BCR-ABL. This constitutively active tyrosine kinase is widely considered as the cause of the disease. Even though BCR-ABL transcripts are found in every dividing hematopoietic cell and thus, the disease is likely to originate from a primitive stem cell, the “cell of origin” is still a matter of debate. Despite the active “leukemia stem cell” discussion, very few characteristics of the “cancer stem cell” are established to date. In order to get further molecular insights into CML stem and progenitor cells, we examined CD34+ cell subsets obtained from bone marrow of 7 patients with CML in chronic phase in comparison with 5 healthy volunteers. CD34+ cells were immunomagnetically selected and high-speed cell sorting of lineage-negative, CD34+, CD38−, hematopoietic stem cells and myeloid progenitors was performed. Progenitors were further subdivided by anti-IL-3Ralpha and anti-CD45RA staining. Following RNA extraction, a two-cycle amplification procedure was used to generate cDNA for the hybridization with Affymetrix U133A2.0 arrays. After performing smoothening spline normalization, we applied the perfect match-mismatch difference model algorithm to calculate expression values (dChip). Hierarchical cluster analysis was performed using a correlation based centroid linkage algorithm. Hereby we could discriminate the HSCs, CMPs, and MEP subsets. Corroboration of RNA expression was performed by real-time RT-PCR for selected genes. Comparing the HSC subsets of CML patients with healthy controls we found 98 differentially expressed genes. 87 genes had a lower expression level in CML HSCs whereas 11 genes had a higher one. Among the downregulated genes in CML were transcriptions factors involved in myelogenesis and proliferation and several adhesion molecules associated with homing and migration of the HSCs. On the other hand, the Leptin receptor and BCR-ABL downstream targets were found to be upregulated. Within the common myeloid progenitor (CMP) compartment 37 genes were significantly differentially regulated. Twenty genes had a higher expression level in CML CMPs, 17 genes were downlegulated. Hematopoietic cell-specific cell cycle inhibitor MS4A3 was among the significantly downregulated genes whereas genes of the retinoblastoma and E2F families as well as inhibitors of the Wnt-signaling pathway were upregulated. Looking at megakaryocte-erythrocyte progenitors (MEP) in CML, key mediators of G2-M cell cycle transition were downregulated indicating a lower proliferative capacity of this subset. No transcriptional differences have been observed between granulocyte-macrophage progenitors from CML patients and healthy volunteers. Interestingly, among all other subsets myeloperoxidase (MPO) was downregulated in the CML samples and the Leptin receptor was upregulated. Our results provide novel insights into the biology of CML and potentially provide the basis for the characterization of a candidate CML stem cell.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 108, No. 11 ( 2006-11-16), p. 3382-3382
    Abstract: Current regimens for peripheral blood stem cell (PBSC) mobilization in patients with multiple myeloma are based on daily subcutaneous injections of G-CSF starting shortly after cytotoxic therapy. Recently a polyethylenglycole (PEG)-conjugated G-CSF has been introduced which has a substantially longer half-life than the original formula and therefore provides the basis for long-lasting G-CSF serum-levels after a single injection. In this study, we compared gene expression patterns, subset composition and functional properties of CD34+ cells and highly purified HSC mobilized with cyclophosphamide and either Peg-G-CSF or G-CSF. Cells were derived from peripheral blood of patients with multiple myeloma. After the end of chemotherapy, 7 patients got a single injection of Peg-G-CSF whereas 9 patients received daily G-CSF resulting in an equal cumulative dose. Gene expression analysis was performed using Affymetrix HG Focus GeneChips. Key functional genes were verified by RT-PCR. Subset analysis and fluorescence based cell sorting has been conducted to assess the effects of stimulation with either pegylated or unconjugated G-CSF on CD34+ subset composition and to obtain HSCs. Cell cycle and apoptosis assays as well as clonogenic assays were for functional corroboration. The same patients with multiple myeloma who had donated CD34+ cells for the molecular and biological studies were transplantated with Peg-G-CSF- or G-CSF-mobilized PBSC. Peg-G-CSF-mobilized cells showed lower expression of genes characteristic for erythroid and later stages of myeloid differentiation as well as a lower BFU-E/CFU-GM ratio compared to G-CSF-mobilized cells. In turn, we found higher expression levels of genes indicative of early hematopoiesis including HOXA9, MEIS1, MLL and GATA3. Subset analyses revealed a greater number of HSC and CMP (common myeloid progenitors) and a lower number of MEP (megakaryocyte-erthrocyte progenitors) in Peg-G-CSF-mobilized CD34+ cells. Cell cycle-promoting genes including cyclins and kinases were higher expressed in Peg-G-CSF-mobilized cells. On the other hand human HTm4, which causes cell cycle arrest in hematopoietic cells, was lower expressed compared to G-CSF-mobilized cells. This is emphasized by a significant higher proportion of actively cycling CD34+ cells after pegfilgrastim-mobilization. Higher gene expression levels of HOXA9, MEIS1 and GATA3 were also found in sorted Peg-G-CSF-mobilized HSC in comparison to G-CSF-mobilized HSC. Moreover, Peg-G-CSF-mobilized HSC showed a lower apoptosis rate and a greater proportion of cells in S- and G2/M phase of cell cycle. After transplantation of Peg-G-CSF-mobilized stem- and progenitor cells we observed earlier leukocyte recovery compared to G-CSF-mobilized transplants. Our data demonstrate that Peg-G-CSF and G-CSF stimulation differentially affects the expression of key regulatory genes and functional properties of mobilized HSC as well as their progeny, which might be important for their application in stem cell transplantation.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2006
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...