GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: International Journal of Cancer, Wiley, Vol. 128, No. 10 ( 2011-05-15), p. 2495-2500
    Abstract: Inappropriate nuclear factor (NF) κB activity is one major hallmark of B‐cell malignancies and chronic lymphocytic leukemia (CLL). NFκB‐dependent genes are involved in antiapoptosis, cell proliferation and metastasis and are responsible for survival and proliferation of tumors. However, the mechanisms of NFκB activity in CLL still need to be elucidated. Previously, we identified translocations in a region on chromosome 6q that encodes tumor necrosis factor alpha‐induced protein 3, which is a key player in negative feedback loop regulation of NFκB. Inactivation of this ubiquitin‐editing enzyme is involved in immunopathologies and in tumorigenesis. Frequent mutations in the A20 locus—leading to sustained NFκB activity—could be shown to play a dominant role in development of different B‐cell malignancies. To check if A20 is involved in upregulation of NFκB activity in CLL, we sequenced Exons 2–9 of the A20 gene in 55 CLL DNA samples. Furthermore, we determined the methylation status of the promoter region in 63 CLL DNA samples and compared to 10 control DNAs of B cells from healthy donors. Contrary to reports from other B‐cell malignancies, the A20 region showed neither mutations nor aberrant DNA methylation. Moreover, its expression could be confirmed by immunoblotting and showing comparable results to healthy B cells. These results indicate that malignant development in CLL differs from most of other B‐cell malignancies, which show frequent inactivation of A20.
    Type of Medium: Online Resource
    ISSN: 0020-7136 , 1097-0215
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2011
    detail.hit.zdb_id: 218257-9
    detail.hit.zdb_id: 1474822-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 1767-1767
    Abstract: Abstract 1767 Background: CLL cells prefer to remain in the microenvironment since they feel safe. CD40 ligand (CD40L)-CD40 interaction induces proliferative/anti-apoptotic genes in CLL cells, which protects them from apoptosis and most cytotoxic drugs by the microenvironment. Research interested in identifying novel drugs that effectively target CLL cells within microenvironmental niches has to consider further microenvironmental stimuli, especially hypoxia. Lymph nodes, especially those being infiltrated by malignant cells show low oxygen tension (1%). Prior CLL investigations never took this important factor into account. The impact of hypoxia on survival and drug-resistance is still unknown. Methods: Therefore we have established an in vitro model, which mimics hypoxic conditions and CD40L-CD40 interaction, in order to understand the molecular basis of drug resistance of CLL resident in the microenvironment. CLL cells were cultured on CD40L feeder cells and kept up to 96 hours in hypoxia (1% O2 tension) or normoxia (21% O2 tension). We applied several drugs under these conditions to investigate the differences between normoxia and hypoxia. The miRNA expression was determined by using Illumina Bead Chip Arrays compromising 752 miRNAs. Gene expression was analyzed via mRNA-based Illumina microchip array. Target miRNAs and mRNAs were validated by qRT-PCR. Apoptosis was determined by AnnexinV-7AAD and JC-1 staining (mitochondrial outer membrane permeabilization) and subsequent flow cytometry. Results: In solid cancers hypoxia is expected to protect malignant cells from chemotherapy. We made similar observations, since classical DNA-targeting drugs were inefficient to kill CLL cells cultured on CD40L feeder cells under hypoxia and normoxia. However, we identified ABT-737, which affect mitochondrial integrity, to be even more efficient under hypoxic conditions and CD40L interaction compared to CD40L stimulation and normoxia (74,1% vs. 52,1% apoptotic cells, n=15; p 〈 0.001). Interestingly, overall survival of primary CLL cells during CD40L-CD40 interaction without any cytotoxic treatment was higher under hypoxia compared to normoxia. To understand this discrepancy, we investigated the expression of several mitochondrial localized anti-/pro-apoptotic genes on RNA and protein level. We identified, that the de-regulation of BCLXL and MCL1 is crucial for ABT-737 sensitivity during hypoxic conditions. This de-regulation was also detectable during CD40L interaction. BCLXL deregulation could be attributed to differential NF-κB expression, as determined by EMSA. Since MCL1 protein expression differs from its mRNA expression, we expected regulation prior to protein synthesis. Indeed, we could identify miRNAs, which were upregulated during hypoxia and CD40L stimulation and regulate MCL1 expression. These miRNAs were validated by luciferase expression assays. Conclusion: Here we investigated for the first time the impact of oxygen tension on therapeutic response of CLL cells. We assume that small molecules like ABT-737, which specifically target mitochondria, might be efficient in targeting CLL cells protected by CD40L-CD40 interaction within the microenvironment. Development of novel in vitro models will allow us to understand the specific molecular changes induced by microenvironmental stimuli and to develop novel therapeutic targets. L.P.F. and M.Hue. contributed equally to this work. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 120, No. 19 ( 2012-11-08), p. 3978-3985
    Abstract: Survival of chronic lymphocytic leukemia (CLL) cells is triggered by several stimuli, such as the B-cell receptor (BCR), CD40 ligand (CD40L), or interleukin-4 (IL-4). We identified that these stimuli regulate apoptosis resistance by modulating sphingolipid metabolism. Applying liquid chromatography electrospray ionization tandem mass spectrometry, we revealed a significant decrease of proapoptotic ceramide in BCR/IL-4/CD40L–stimulated primary CLL cells compared with untreated controls. Antiapoptotic glucosylceramide levels were significantly increased after BCR cross-linking. We identified BCR engagement to catalyze the crucial modification of ceramide to glucosylceramide via UDP-glucose ceramide glucosyltransferase (UGCG). Besides specific UGCG inhibitors, our data demonstrate that IgM-mediated UGCG expression was inhibited by the novel and highly effective PI3Kδ and BTK inhibitors CAL-101 and PCI-32765, which reverted IgM-induced resistance toward apoptosis of CLL cells. Sphingolipids were recently shown to be crucial for mediation of apoptosis via mitochondria. Our data reveal ABT-737, a mitochondria-targeting drug, as interesting candidate partner for PI3Kδ and BTK inhibition, resulting in synergistic apoptosis, even under protection by the BCR. In summary, we identified the mode of action of novel kinase inhibitors CAL-101 and PCI-32765 by controlling the UGCG-mediated ceramide/glucosylceramide equilibrium as a downstream molecular switch of BCR signaling, also providing novel targeted treatment options beyond current chemotherapy-based regimens.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 1766-1766
    Abstract: Abstract 1766 Introduction: Survival of CLL cells is triggered by the B-cell receptor (BCR). However, little is known about metabolic processes, which are influenced by the BCR and which are essential for survival of malignant cells such as sphingolipid metabolism. Certain sphingolipids are considered as bioeffector signaling molecules since they regulate several pathways involved in cell metabolism and survival (e.g. mitochondria). For instance ceramide, as the central molecule in sphingolipid metabolism, contributes to apoptosis and growth inhibition. In contrast, glucosylceramide, generated out of ceramide, is responsible for proliferative attributes such as resistance to apoptosis and to several chemotherapeutics. We therefore investigated the role of sphingolipid metabolism in survival and apoptosis-resistance of CLL cells. Methods and Results: We performed liquid chromatography electrospray ionization tandem mass spectrometry of 8 CLL samples in order to determine sphingolipid levels. Prior analysis, cells were either incubated with anti-IgM immunobeads for 24h or were left native. IgM stimulation significantly increased survival of primary CLL cells (n=9; p=0.0246) shown by flow cytometry. Our mass spectrometric analysis revealed a significant decrease of apoptosis-inducing ceramide in BCR-stimulated CLL cells compared to native controls (16:0 p 〈 0.0001, 22:0 p=0.0325, 24:0 p 〈 0.0001, 24:1 p=0.0010). Simultaneously, glucosylceramide synthesis was significantly increased after BCR engagement pointing out its pro-survival effect (16:0 p=0.0004, 18:0 p=0.0343, 24:1 p=0.0012, 26:1 p=0.0027). The total amount of ceramide and glucosylceramide did not change after IgM stimulation. Most importantly, the ratio between pro-apoptotic ceramide and pro-survival glucosylceramide became almost completely reverted towards glucosylceramide after IgM stimulation. Via PCR, we could identify the enzyme UDP-glucose ceramide glucosyltransferase (UGCG) to catalyze the synthesis of glucosylceramide out of ceramide after BCR engagement (p=0.0126). In order to investigate the functional impact of this observation, we tested whether inhibition of UGCG (UGCGi) in combination with a ceramide-inducing drug might lead to increased apoptosis during IgM stimulation. Thereby, we identified ABT-737 as agent that induces apoptosis through up-regulation of ceramide. As UGCG enzyme inhibitor, we used N-(n-Butyl)deoxygalactonojirimycin (OGB-1) and N-(n-Nonyl)deoxygalactonojirimycin (OGB-2). While IgM stimulation protected CLL cells partly from ABT-737-induced apoptosis as determined by AnnexinV-7AAD and JC-1 staining (mitochondrial outer membrane permeabilization) and subsequent flow cytometry, UGCGi reverted this effect leading to a significantly higher amount of apoptotic cells (n=9; p=0.0021). In order to prove that ABT-737-induced apoptosis influenced the ratio of ceramide:glucosylceramide in primary CLL cells, we performed additional mass spectrometric analyses. Most importantly, we could show that UGCGi reverted the ratio between ceramide:glucosylceramide towards ceramide after IgM stimulation. Protection from ABT-737 by IgM stimulation was also measurable by glucosylceramide-dominated ratio. Finally, inhibition of UGCG during IgM stimulation and ABT-737 treatment resulted in higher apoptosis accompanied by ceramide-dominated ratio. Conclusion: Here we identified how BCR engagement controls lipid metabolism and thereby survival and apoptosis-resistance of primary CLL cells. Our findings suggest that ceramide and glucosylceramide may be mediators of survival of CLL cells upon BCR stimulation. The ratio between ceramide and glucosylceramide seems to be crucial to induce resistance to apoptosis. This study provides potential targets for treatment of CLL beyond current concepts. C.M.W. and L.P.F contributed equally to this work. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 2829-2829
    Abstract: Abstract 2829 Introduction: Post-translational modifications are important fine-tuning elements for controlling protein activity and signaling. Palmitoylation is a common post-translational modification and defined as the addition of palmitic acid to internal cysteins. Interestingly, in contrast to other lipid modifications, it is reversible. Control over the palmitoylation cycle therefore provides indirect control over protein localization and function. While a number of proteins with palmitoyl transferase activity are known, LYPLA1 (lysophospholipase 1) is the only enzyme known to be responsible for the process of depalmitoylation. CLL cells are known to be resistant to TRAIL-mediated apoptosis. While TRAIL-R1 is reported to be palmitoylated, TRAIL-R2 seems to contain a region with basic amino acids in its membrane-proximal cytoplasmatic domain. Some studies showed that palmitoylation is crucial for several steps of death receptor signaling. Therefore, regulation of depalmitoylation by LYPLA1 seems to be an important tool for the regulation of death receptor function. Methods and Results: Global palmitoylation in CLL cells was investigated by screening for all palmitoylated proteins via a click chemistry assay. There, cells were metabolically labeled, coupled to a specific reporter group and then analyzed by in-gel fluorescence. Comparison of healthy B cells, healthy PBMCs and CLL cells revealed a significant difference in global palmitoylation (+38.5 % in B cells, n=6, p 〈 0.001; +57.8 % in healthy PBMCs, n=6, p 〈 0.001 compared to CLL cells, n=10). We identified LYPLA1 as overexpressed in CLL compared to healthy controls on both protein and mRNA level. We generated a potent LYPLA1 inhibitor. We could show, that inhibition of LYPLA1 led to a significant increase of the overall protein palmitoylation level in CLL cells (+24.7 % n=6, p=0.0118). Ours and other groups have shown, that treatment of cancer cells with TRAIL and X-linked inhibitor of apoptosis protein (XIAP)-inhibition lead to apoptosis in otherwise TRAIL resistant CLL cells. Since death receptors might be palmitoylated, we extended these studies. Treatment of CLL cells with TRAIL, XIAP- and LYPLA1-inhibition led to significantly increased apoptosis compared to TRAIL treatment and XIAP-inhibition alone (+43.2 %, n=12, p=0.0089). Palmitoylation of death receptors was investigated with the help of acyl-biotin exchange chemistry. We could show that palmitoylation of TRAIL-R1 was significantly increased after LYPLA1-inhibiton (+58.7 %, n=3, p=0.0169). It could be demonstrated, that inhibition of LYPLA1 in combination with death receptor stimulation increased the amount of activated caspase-8 in comparison to solely TRAIL and DMSO treated cells (+41.8 %, n=3, p=0.0199), indicating that palmitoylation plays a crucial role in apoptotic signaling far from XIAP. In addition to that, we could show that inhibition of depalmitoylation of TRAIL-R1 led to more death receptor located to lipid rafts. To understand how LYPLA1 is regulated, we investigated two highly conserved miRNAs which were predicted as key regulators of LYPLA1 and which are significantly downregulated in CLL. Indeed, luciferase assays revealed that both miRNAs were able to downregulate LYPLA1 expression. Conclusion: We show for the first time, that LYPLA1 is a central enzyme which regulates the apoptotic signaling of TRAIL. Furthermore, we identified LYPLA1 to be regulated by miRNAs, which are deregulated in CLL. These novel findings allow speculation, that LYPLA1 inhibitors could be used for the treatment of CLL. Future experiments should therefore aim at investigating the LYPLA1 signaling pathway as a potential target for CLL/ cancer therapy. L.P.F. and V.F. contributed equally to this work. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 3905-3905
    Abstract: Abstract 3905 Background: Apoptosis resistance of chronic lymphocytic leukemia (CLL) cells is mediated by several pro-survival stimuli. In particular, engagement of the B-cell receptor (BCR), CD40-CD40 ligand (CD40L) interaction or stimulation by interleukin-(IL)-4 were identified as major factors to regulate chemoresistance. Sphingolipids are known to be involved in several metabolic pathways involved in chemoresitance. Therefore, we focused on ceramide as pro-apoptotic molecule and its counterpart glucosylceramide, which rather contributes to proliferation and survival. Methods and Results: Applying liquid chromatography electrospray ionization tandem mass spectrometry, we revealed a significant decrease of pro-apoptotic ceramide in BCR/IL-4/CD40L-stimulated primary CLL cells compared to untreated controls (p=0.0258, p=0.0478, p=0.0114). Anti-apoptotic glucosylceramide levels were significantly increased after BCR cross-linking (p=0.0435) while other stimuli caused no relevant change in glucosylceramide expression. We identified BCR engagement to catalyze the crucial modification of ceramide to glucosylceramide via the enzyme UDP-glucose ceramide glucosyltransferase (UGCG) (p=0.0001). Besides specific UGCG inhibitors, we could show for the first time that IgM-mediated UGCG expression was significantly inhibited by the novel and highly effective PI3Kδ and BTK inhibitors CAL-101 and PCI-32765, which were able to revert IgM-induced apoptosis resistance of CLL cells. Recently published data revealed sphingolipids to be essential for mediation of apoptosis via mitochondria. Therefore, we chose ABT-737 – a well-known and also mitochondria-targeting drug – as candidate partner for PI3Kδ and BTK inhibition. When combining each tyrosine kinase inhibitor with ABT-737, a synergistic apoptotic effect could be documented, even under protection by BCR stimulation. Conclusion: In summary, we could demonstrate that sphingolipids are critically involved in CLL pathogenesis. UGCG could be identified as drugable target by the novel kinase inhibitors CAL-101 and PCI-32765 resulting in even synergistic apoptosis following additional application of ABT-737. Sphingolipids seem to offer further targets providing novel treatment options in CLL. C.M.W. and L.P.F. contributed equally to this work. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: British Journal of Haematology, Wiley, Vol. 152, No. 2 ( 2011-01), p. 191-200
    Type of Medium: Online Resource
    ISSN: 0007-1048
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2011
    detail.hit.zdb_id: 1475751-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 3886-3886
    Abstract: Abstract 3886 Introduction: As previously published by Di Bernado et al. (2008) the single nucleotide polymorphism (SNP) RS872071 located in the 3'UTR of IRF4 (Interleukin Regulatory Factor 4) has influence on the risk for developing chronic lymphocytic leukemia (CLL). IRF4 is a key player in the development of B lymphocytes and multiple myelomas. The SNP is either expressed as Adenine (A) or Guanine (G). Expression of G/G increases the risk to develop CLL. MicroRNAs (miRNAs) adhere posttranscriptional to the 3'untranslated region (UTR) of mRNAs and can influence the expression of mRNA and proteins. The SNP lies within the 3'UTR of IRF4 and offers some putative binding sites for miRNAs. The aim of this project is to proof that this SNP has influence on the binding behavior of miRNAs, which are influencing the IRF4 expression. Methods and results: To identify miRNAs binding to this region we cloned the neighboring region of the SNP into a luciferase expressing vector and generated the SNP by mutagenesis. In luciferase assays 15 miRNAs were checked for differences in binding affinity dependent on SNP expression. Three of them showed significant SNP dependent binding behavior. In all cases expression of SNP G leads to reduced luciferase expression, indicating suppression of IRF4. To elucidate the consequences on SNP expression on cellular level in CLL we collected DNA derived from B cells of CLL patients (n=104) and sequenced the SNP region. All together our pool of patients expressed 25% A/A, 31% A/G and 44% G/G. MRNA and protein expression of IRF4 was considered SNP-dependently and compared to healthy B cells. On mRNA and protein level CLL cells have a significant higher IRF4 expression compared to healthy B cells. SNP-dependent comparison between CLL cells on mRNA-level shows a tendency of less IRF4 expression in B cells of patients expressing the G/G SNP compared to patients expressing A/A SNP. However on protein level this tendency was not detected. As IRF4 is known as a key regulator for extracellular stimuli, we focused on SNP dependent IRF4 regulation after different stimuli. Whereas CD40 and IL-4 stimulation did not show SNP dependent regulation, stimulation of the B cell receptor (BCR) leads to a higher IRF4 induction in patients carrying A/A (n=6) compared to patients carrying G/G (n=5) and A/G (n=8) (p 〈 0.05). Conclusion: For the first time connections between the SNP RS872071 and molecular mechanisms explaining his influence on the pathogenesis on CLL were drawn. Dependent on expressed SNP miRNAs bind with different affinities to the 3'UTR. In further experiments the connection between IgM stimulation and miRNA expression has to be tightened. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 3597-3597
    Abstract: Abstract 3597 Introduction: The microenvironment and especially the antigenic stimulation of the B-cell receptor on the surface of the malignant cell play a crucial role in the pathogenesis of chronic lymphocytic leukemia (CLL). Aberrant Nuclear Factor kappa B (NFκB) activity is another major hallmark of B-cell malignancies as well as of CLL. NFκB-dependent genes are involved in anti-apoptotic regulation, cell proliferation and metastasis and are responsible for survival and proliferation of tumors. However, the mechanisms of NFκB over-expression in CLL still remain to be elucidated. Prior studies revealed that cylindromatosis (CYLD) function might be of special interest in CLL since it inhibits signaling via TRAF2 and c-IAP1/2, which are known to be over-expressed in CLL. CYLD inactivation might therefore result in sustained NFκB signaling. The enzyme CYLD, a tumor suppressor that functions as a deubiquitinase, plays a role in other physiological aspects such as cell cycle response, inflammatory and immune processes. Moreover, it could be shown that impaired CYLD activity leads to increased NFκB activity in multiple myeloma cells demonstrating the negative regulatory function of CYLD regarding NFκB. Aside from CYLD, which is constitutively active preventing uncontrolled transcription factor activation, the enzyme A20, a key player in negative feedback loop regulation of NFκB, operates via induction, supposing that both enzymes might proceed at different phases of NFκB signaling. A20, also known as tumor necrosis factor alpha-induced protein 3 (TNFAIP3), acts as an ubiquitin-editing enzyme. Its inactivation is involved in immunopathologies (e.g. Crohn's disease, rheumatoid arthritis, systemic lupus erythematodes, psoriasis and type 1 diabetes mellitus) and in tumorigenesis. Frequent mutations in the A20 locus – leading to sustained NFκB activity – could be shown to play a dominant role in development of different B-cell malignancies. Experimental design and results: Based on genome-wide gene expression profiling analysis of CLL samples (n=8) compared to healthy donor B-cells (n=5), CYLD is expressed and its expression was reduced following B-cell receptor cross-linking (24 hours) (p=0,0036) contrary to A20 that could be induced after receptor stimulation (p=0,044). These results underline the role of B-cell receptor signaling in survival regulation of CLL cells and also its in-direct influence on NFκB activity. Recently, our report revealed by methylation analysis and additional sequence analysis that the A20 region neither contains any methylation (64 CLL patients versus 10 healthy donors) nor mutation (55 CLL patients with sequence analysis of exons 2–9 of the tnfaip3 gene) contrary to reports from other B-cell malignancies. Moreover, A20 expression could be confirmed by immunoblotting showing comparable results to healthy B-cells. In order to check if such alterations in the enzyme CYLD might occur in CLL leading to sustained activity of NFκB similar to other B-cell entities, we performed analysis of the methylation status of the promoter region of CYLD in 64 CLL patients compared to 10 DNAs of CD19-selected B-cells from healthy donors. Epigenetic alterations of the CYLD promoter could not be identified. Conclusions: Here we present the first report of epigenetic and mRNA expression analysis concerning the deubiquitinase CYLD in CLL. We identified that CYLD as well as A20 are regulated by B-cell receptor signaling. The opposed expression of CYLD and A20 after stimulation of the receptor might contribute to an almost balanced and well-adjusted NFκB activity. Our results of lacking epigenetic alteration in both proteins (A20 and CYLD) and absence of mutations in A20 indicate that malignant development in CLL differs from most of other B-cell malignancies, which show frequent inactivation of either CYLD or A20. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 1375-1375
    Abstract: Abstract 1375 Background: Since aggressive DNA damaging chemotherapy shows suboptimal efficacy in chronic lymphocytic leukemia (CLL), alternative therapeutic approaches are needed. Moreover, there is an essential need to improve specific therapeutic regimes for “non-fit” patients, which cannot receive myeloablative therapies. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is able to induce tumor-specific apoptosis. However, apoptosis might be inhibited by elevated X-linked inhibitor of apoptosis (XIAP) level, the only cellular protein capable to bind to and effectively inhibit caspases. Use of XIAP-inhibiting compounds might sensitize primary CLL cells towards TRAIL-induced lysis. Experimental design: We compared XIAP protein levels between freshly purified CD5+CD19+ primary CLL cells (n=28) and CD19+ B cells from healthy donors (n=16) by western blotting. In a knockdown approach, specific siRNAs against XIAP were nucleofected to check whether XIAP expression prevents TRAIL-mediated apoptosis in CLL. After proof of concept, we applied the novel small molecule IAP antagonizing compound (IAC), an inhibitor of XIAP, in combination with TRAIL to induce apoptosis in primary CLL cells (n=48). Compound A (CA) was developed based on the crystal structure of four amino acids of SMAC, which enabling SMAC to efficiently bind the BIR3 domain of XIAP. In contrast to the active compound CA, which consists of an amino terminal methyl alanine, the inactive compound CB used in our studies as a negative control has an amino terminal methyl glycine. This specific substitution results in a significant reduction of IAP binding capability of CB as CA has binding affinity to XIAP in the picomolar range and CB is a weak binder with micromolar binding affinity to XIAP. Results: XIAP is significantly higher expressed in primary CLL cells (n=28) compared to healthy B cells (n=16) (P=0.02). Our data obtained by specific knockdown of XIAP via siRNA identified XIAP as the key factor conferring resistance to TRAIL in CLL. Based on these results we used IAC in combination with TRAIL. Combined treatment with both drugs significantly increased apoptosis compared to untreated (P=8.5×10-10), solely IAC (P=4.1×10-12) or TRAIL treated (P=4.8×10-10) CLL cells. As a potent cellular caspase inhibitor, we also examined the involvement of caspases in CA/TRAIL-mediated apoptosis. Not surprisingly, co-application of pan-caspase inhibitor zVAD.fmk inhibited cell death induced by CA/TRAIL underscoring the apoptotic caspase-dependent cytotoxicity of CA/TRAIL treatment in CLL cells. IAC rendered 40 of 48 (83.3%) primary CLL samples susceptible towards TRAIL-mediated apoptosis. Especially cells derived from patients with poor prognosis (ZAP-70+, IGHV unmutated, 17p-) were highly responsive to this drug combination. Furthermore, this study reveals that TRAIL application alone induces apoptosis in poor-prognosis CLL samples (13,8% in ZAP-70+ (n=10) vs. 2,3 in ZAP-70- (n=9); P=0.0008), which correlates with the elevated expression levels of TRAIL-R1 and –R2 on ZAP-70+ CLL cells. To assess whether TRAIL treatment is CLL cell specific, healthy B cells (n=4) were exposed to TRAIL alone or CA(CB)/TRAIL and showed significantly lower susceptibility towards CA/TRAIL administration than CLL cells. Conclusion: XIAP is over-expressed in CLL and displays a suitable target to induce TRAIL-mediated apoptosis. The novel XIAP inhibitor used in our study was able to inhibit XIAP function at a concentration of 0,1μM. CA/TRAIL administration was also shown not to induce apoptosis in healthy donor B cells and might therefore also display an attractive option for “non-fit” CLL patients. Our highly effective XIAP inhibitor CA, in concert with TRAIL, shows potential for treatment of CLL of those cases with poor prognosis and therefore warrants further clinical investigation. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...