GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2018-10-18)
    Abstract: Real time in vivo methods are needed to better understand the interplay between diet and the gastrointestinal microbiota. Therefore, a rodent indirect calorimetry system was equipped with hydrogen (H 2 ) and methane (CH 4 ) sensors. H 2 production was readily detected in C57BL/6J mice and followed a circadian rhythm. H 2 production was increased within 12 hours after first exposure to a lowly-digestible starch diet (LDD) compared to a highly-digestible starch diet (HDD). Marked differences were observed in the faecal microbiota of animals fed the LDD and HDD diets. H 2 was identified as a key variable explaining the variation in microbial communities, with specific taxa (including Bacteroides and Parasutterella ) correlating with H 2 production upon LDD-feeding. CH 4 production was undetectable which was in line with absence of CH 4 producers in the gut. We conclude that real-time in vivo monitoring of gases provides a non-invasive time-resolved system to explore the interplay between nutrition and gut microbes in a mouse model, and demonstrates potential for translation to other animal models and human studies.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular Nutrition & Food Research, Wiley, Vol. 62, No. 2 ( 2018-01)
    Abstract: Metabolic programming can occur not only in the perinatal period, but also post‐weaning. This study aims to assess whether fructose, in comparison to glucose, in the post‐weaning diet programs body weight, adiposity, glucose tolerance, metabolic flexibility, and health at adult age. Methods and results Three‐week‐old male and female C57BL6/JRccHsd mice are given an intervention diet with 32 energy percent (en%) glucose or fructose for only 3 weeks. Next, all animals are switched to the same 40 en% high fat diet for 9 weeks. Neither body weight nor adiposity differs significantly between the animals fed with glucose or fructose diets at any point during the study in both sexes. Glucose tolerance in adulthood is not affected by the post‐weaning diet, nor are activity, energy expenditure, and metabolic flexibility, as measured by indirect calorimetry. At the end of the study, only in females fasting serum insulin levels and HOMA‐IR index are lower in post‐weaning fructose versus glucose diet ( p = 0.02), without differences in pancreatic β‐cell mass. Conclusions Our present findings indicate no adverse programming of body weight, adiposity, glucose tolerance, and metabolic flexibility by dietary (solid) fructose in comparison to glucose in the post‐weaning diet in mice.
    Type of Medium: Online Resource
    ISSN: 1613-4125 , 1613-4133
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2160372-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2019-08-08)
    Abstract: Indirect calorimetry (InCa) estimates whole-body energy expenditure and total substrate oxidation based on O 2 consumption and CO 2 production, but does not allow for the quantification of oxidation of exogenous substrates with time. To achieve this, we incorporated 13 CO 2 and 12 CO 2 gas sensors into a commercial InCa system and aimed to demonstrate their performance and added value. As a performance indicator, we showed the discriminative oscillations in 13 CO 2 enrichment associated with food intake in mice fed diets containing naturally low (wheat) vs high (maize) 13 C enrichment. To demonstrate the physiological value, we quantified exogenous vs total carbohydrate and fat oxidation continuously, in real time in mice varying in fat mass. Diet-induced obese mice were fed a single liquid mixed meal containing 13 C-isotopic tracers of glucose or palmitate. Over 13 h, ~70% glucose and ~48% palmitate ingested were oxidised. Exogenous palmitate oxidation depended on body fat mass, which was not the case for exogenous glucose oxidation. We conclude that extending an InCa system with 13 CO 2 and 12 CO 2 sensors provides an accessible and powerful technique for real-time continuous quantification of exogenous and whole-body substrate oxidation in mouse models of human metabolic physiology.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 18 ( 2022-09-06), p. 10207-
    Abstract: Short-term post-weaning nutrition can result in long-lasting effects in later life. Partial replacement of glucose by galactose in the post-weaning diet showed direct effects on liver inflammation. Here, we examined this program on body weight, body composition, and insulin sensitivity at the adult age. Three-week-old female C57BL/6JRccHsd mice were fed a diet with glucose plus galactose (GAL; 16 energy% (en%) each) or a control diet with glucose (GLU; 32 en%) for three weeks, and afterward, both groups were given the same high-fat diet (HFD). After five weeks on a HFD, an oral glucose tolerance test was performed. After nine weeks on a HFD, energy metabolism was assessed by indirect calorimetry, and fasted mice were sacrificed fifteen minutes after a glucose bolus, followed by serum and tissue analyses. Body weight and body composition were not different between the post-weaning dietary groups, during the post-weaning period, or the HFD period. Glucose tolerance and energy metabolism in adulthood were not affected by the post-weaning diet. Serum adiponectin concentrations were significantly higher (p = 0.02) in GAL mice while insulin, leptin, and insulin-like growth factor 1 concentrations were not affected. Expression of Adipoq mRNA was significantly higher in gonadal white adipose tissue (gWAT; p = 0.03), while its receptors in the liver and skeletal muscles remained unaffected. Irs2 expression was significantly lower in skeletal muscles (p = 0.01), but not in gWAT or Irs1 expression (in both tissues). Gene expressions of inflammatory markers in gWAT and the liver were also not affected. Conclusively, galactose in the post-weaning diet significantly improved circulating adiponectin concentrations and reduced skeletal muscle Irs2 expression in adulthood without alterations in fat mass, glucose tolerance, and inflammation.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Nutrients, MDPI AG, Vol. 11, No. 9 ( 2019-09-18), p. 2242-
    Abstract: Starches of low digestibility are associated with improved glucose metabolism. We hypothesise that a lowly digestible-starch diet (LDD) versus a highly digestible-starch diet (HDD) improves the capacity to oxidise starch, and that this is sex-dependent. Mice were fed a LDD or a HDD for 3 weeks directly after weaning. Body weight (BW), body composition (BC), and digestible energy intake (dEI) were determined weekly. At the end of the intervention period, whole-body energy expenditure (EE), respiratory exchange ratio (RER), hydrogen production, and the oxidation of an oral 13C-labelled starch bolus were measured by extended indirect calorimetry. Pancreatic amylase activity and total 13C hepatic enrichment were determined in females immediately before and 4 h after administration of the starch bolus. For both sexes, BW, BC, and basal EE and RER were not affected by the type of starch, but dEI and hydrogen production were increased by the LDD. Only in females, total carbohydrate oxidation and starch-derived glucose oxidation in response to the starch bolus were higher in LDD versus HDD mice; this was not accompanied by differences in amylase activity or hepatic partitioning of the 13C label. These results show that starch digestibility impacts glucose metabolism differently in females versus males.
    Type of Medium: Online Resource
    ISSN: 2072-6643
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2518386-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...